時間:2024-02-18 15:59:35
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇人工智能課堂教學范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
一、引言
近年來,隨著云計算、人工智能、大數據和移動計算等新技術的發展與應用,知識管理理念的日趨成熟,新興技術對高等學校教育教學模式的改革與創新帶來了良好的機遇。2012年3月13日,教育部印發的《教育信息化十年發展規劃(2011-2020年)》,旨在推進信息技術與教育教學的深度融合,實現教育思想、理念、方法和手段全方位創新。2016年6月7日,教育部頒布實施的《教育信息化“十三五”規劃》,以期加快推動信息技術與教學教育的融合發展。這些政策的出臺為高校翻轉課堂教學模式的發展提供了明確的實施導向和政策支持,也為重慶理工大學會計信息化國家級精品課程之《會計軟件開發技術》(AccountingSoftwareDevelopmentTechnology,以下簡稱為ASDT)課程實施翻轉課堂教學模式改革與創新帶來了良好的契機。知識庫采用知識表示方式來存儲、組織、管理和使用互相聯系的基礎學習知識、學習過程沉淀的知識和學生自我搭建的知識?;谌斯ぶ悄芗夹g的翻轉課堂知識庫構建與應用,不但可以調動學生的積極性和主動性,讓課程教學延伸到網絡平臺,還能夠在很大程度上提高課程的教學質量和教學效果。大數據、人工智能、知識庫等技術的發展為翻轉課堂教學模式的有效開展提供了良好的技術支撐,引起了教育界的廣泛關注。周宇等人(2016)提出了一種面向關聯數據的機構知識庫構建方法,該方法能夠覆蓋機構知識庫構建的整個過程,并支持機構知識的資源整合、語義檢索、知識推理和關聯數據。鐘曉流等人(2013)信息化環境中基于翻轉課堂理念的有效教學設計模型,對翻轉課堂產生的背景與緣起、含義與特征、當前的研究進展與實踐案例、相關的技術工具等進行了系統分析。曾明星等人(2014)闡述了翻轉課堂的內涵、應用與研究現狀,分析了軟件開發類課程實施翻轉課堂的可行性,探討了軟件開發類課程翻轉課堂教學模型及其構成要素。劉清堂等人(2016)分析了機器教學、計算機輔助教學、智能導師系統的基本設計理念、關鍵技術以及代表性系統,提出以學習分析為核心的智能技術整合、融合人工智能和人類智能的自適應學習。綜觀上述文獻,現有研究主要從翻轉課堂的可行性和模型等方面去思考翻轉課堂的教學模式改革問題,而利用人工智能、大數據等現代信息技術去改革與創新翻轉課堂教學模式的研究文獻還相對比較匱乏?;谌斯ぶ悄芗夹g的翻轉課堂知識庫構建與應用,通過全程記錄課上和課下的教學互動過程,可以改善翻轉課堂在教學方式、學生學習方式、評價體系等諸多方面的不足。鑒于此,本文基于大數據、人工智能等技術,探索改進與提升翻轉課堂教學模式改革與創新的新技術與新方法。
二、基于人工智能的春秋戰國翻轉課堂知識的表達
人工智能(ArtificialIntelligence)是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學,主要包括機器人、語言識別、圖像識別、自然語言處理、智能監控、智能搜索等核心技術。ASDT課程將語音識別、語義識別、圖像識別和智能搜索等人工智能技術融入翻轉課堂教學改革的同時,導入春秋戰國時期的七國爭霸作為教學情景,將班上所有學生平均分成七個小組,分別對應齊、楚、燕、趙、韓、魏、秦等七個國家,每個小組的學生進行角色扮演,實施“春秋爭霸”翻轉課堂教學。在ASDT教學過程中,在講授會計軟件開發技術和會計數據業務處理流程的同時,讓學生充分參與課程教學活動,強化互動學習,培養學生的團隊協作能力、溝通能力、PPT制作與演講能力、知識消化吸收及應用等能力。基于人工智能翻轉課堂知識庫構建的基礎是將ASDT課堂的課堂教學活動和學生自主學習活動過程中形成的知識符號化的一個過程,通過對知識的映射轉化為可供描述的事實和推理事實的數據結構。在構建知識庫的過程中,知識的表達方式是構建知識庫的關鍵。知識表達方式主要包括描述性、直接性、過程性等表達方式。其中,描述性的知識表達方式是客觀和完整地反映相關專業領域的理論知識,具有準確性和邏輯性的特點。直接性的表達方式是以專業理論知識為基礎,以圖片、視頻、音頻和圖形等方式直接表達知識的本質。過程性的知識表達方式是在教學過程中的積累和總結的經驗知識。以下具體闡述在課堂教學活動和學生自主學習活動中知識的表達方式。
(一)課堂教學活動課堂教學活動由教師圍繞各小組在完成作業的過程中遇到的實際問題,引導學生進行小組作品展示和組織小組間互動討論。在課堂教學活動中,各小組通過PPT演示講解本組作品中所涉及的知識點,運行程序進行作品展示。其他小組針對展示的作品輪流提問,小組回答問題以后,教師對作品進行綜合性點評并打分。最后,教師根據知識庫中的記錄的學生自主學習活動中遇到的問題引導學生互動討論,解決問題,針對學生不能解決的問題,進行重點講解。在整個課堂教學活動中,教師對知識點的講解、評價表現為描述性的知識,而教師和學生的角色高頻切換,教師和學生評價、引導和提問不停迭代的探究式教學過程,表現為過程性的知識。通過語音識別、語義識別等人工智能技術的運用,自動識別和理解學生作品展示、各小組提問、教師綜合點評等教學活動中的語言,轉換為相應的文本,按照知識的表達方式自動分類,并實時傳送到網絡平臺,更新知識庫。
(二)學生自主學習活動將ASDT課程的教學目標和教學內容按主題進行任務分解,根據教學計劃逐步推進,學生根據小組任務在重慶理工大學精品課程網上觀看教學視頻進行自主學習,小組成員合作完成小組任務。學生在學習過程中產生的疑問,可以借助智能搜索技術檢索知識庫,知識庫推送相關知識點,幫助學生解決問題。在學生的自主學習過程中,學生在網頁中通過簡單檢索、組配檢索、限制檢索等手段,進行交互式的訪問,最終獲得所需的知識信息,表現為過程性的知識。學生觀看教學視頻對相關知識點進行學習表現為直接性的知識。
三、基于人工智能的翻轉課堂知識庫的構建
在知識的直接性表達、描述性表達和過程性表達等多種方式下,多角度獲取教學活動中的各種知識以構建知識庫?;谌斯ぶ悄艿姆D課堂知識庫包括教師編輯維護的知識庫、學生自我搭建的知識庫以及課堂學習過程中沉淀積累形成的知識庫三部分,在教學活動中不停地進行動態更新,形成一個翻轉課堂知識庫的生態循環。其中,老師編輯維護的知識庫是根據教學計劃和教學任務按規則生成課題所需的知識點;學生自我搭建的知識庫是根據學生在網絡平臺上提出的問題,生成的答案和解釋;課堂學習過程中沉淀積累形成的知識庫是自動記錄和存儲學生在課堂上的各種學習行為?;谌斯ぶ悄艿姆D課堂知識庫,
(一)教師建立維護學生基礎學習知識庫教師首先根據教學總任務和總目標規劃具體小組任務,按照教學大綱小組任務,同時在網絡平臺上編輯學生完成小組任務所需的基礎知識和教學視頻。此環節對課程的翻轉和構建基礎學習知識庫具有重要的指導意義。建立基礎學習知識庫要和小組任務相匹配,并且具備合理性、科學性和可操作性,盡量涵蓋完成小組任務所涉及的知識點。否則學生將無法完成小組任務,也無法有效建立基礎學習知識庫。學生根據小組任務和本小組實際情況,觀看教學視頻和學習資料,滿足基礎知識儲備,完成小組作品。教師根據學生在自主學習過程中提出的問題不斷更新維護基礎學習知識庫。
(二)學生自主學習形成知識庫學生根據教師在網絡學習平臺上的任務,進行自主學習,完成小組的學習任務。當學生提出疑問時,網絡平臺會自動檢索知識庫,找到相應的知識點和教學視頻對學生進行智能推送,學生解答問題。并且在人工智能技術的應用下,會自動記錄學生在網絡學習平臺上的問題,形成并更新知識庫,把學生的學習記錄反饋給教師,幫助教師及時調整教學計劃。
(三)課堂教學活動中形成知識庫在學生的課堂學習中,小組成員進行PPT講解和作品展示,在語音識別、語義識別和自動計分等人工智能技術下,自動記錄和分析小組的作品展示情況、個人發言情況和積分情況。并且自動記錄老師的總結點評和答疑,通過圖像分析技術,自動歸集學生個人的學習資料。同時,把課堂過程中的學生提問、教師答疑所涉及的知識,自動對接到網絡平臺,更新知識庫。
四、知識庫在翻轉課堂教學活動中的具體應用
基于人工智能的知識庫在翻轉課堂教學活動中的具體應用主要包括自主學習、課堂教學和效果評價等三個方面。自主學習是指學生在翻轉課堂的網絡學習平臺上進行課前的基礎知識學習和基礎知識自測,并且借助知識庫解決疑問;課堂教學是利用基于人工智能技術構建的知識庫,幫助教師和學生解決教學過程中的問題;效果評價是在翻轉課堂的教學模式下,建立的適合現行教學模式下的學生評價體系,教師根據基礎學習情況,在線統計問題,制定教學計劃。下面將詳細闡述人工智能的知識庫在翻轉課堂教學活動各中的具體應用,如圖2所示。
(一)自主學習在自主學習過程中,學生首先了解教師的小組任務,在人工智能技術的應用下,根據老師的學習任務,智能化地制定學習目標。學生根據細化的學習目標進行自主學習,明確自主學習的課程內容,并根據課程內容和自身情況選擇合適的學習內容。學生通過網絡平臺觀看教師提供的教學視頻或其他形式的學習材料開展學習,對學習收獲進行記錄,最后在網絡平臺上進行知識檢測。同時,應用智能監控技術可以實時監控學生在網絡上的學習情況和發言情況。學生可以根據自己的預習情況,在線提出問題,網絡平臺會根據學生提出的問題自動檢測知識庫,知識庫推送相關知識點和學習資源,幫助學生分析和解決問題。利用智能監控技術,可以收集學生頻繁在網絡平臺上搜索的所有問題。同時,學生也可以將問題進行拍照或者錄制成視頻發送給教師,利用圖像分析技術可以自動識別圖片或者視頻中的問題并且推送給教師,根據問題調整教學內容和教學計劃。
(二)課堂教學教師根據知識庫中記錄的學生自主學習情況,全面系統地了解學生的基礎知識學習情況。知識庫匯總學生在網絡平臺上的發言和提問情況,教師根據匯總的問題在課堂上進行重點講解,使課堂學習更加高效。在學生作品展示、小組互動提問、教師綜合點評等教學活動中,學生和教師可以借助知識庫智能推送相關知識點,幫助解決教學活動中的問題。同時可以智能推理出合適的教學計劃給教師進行選擇。在學生提出問題和解答問題的過程中,智能收集問題和答案,形成知識,更新知識庫。
(三)效果評價效果評價包含教學質量評價和學生評價兩個環節。其中,教學質量評價是全面、系統的了解學生的學習情況和知識儲備情況下,合理、客觀地評估教師的教學質量。學生評價是考核學生的知識掌握情況、交流與溝通能力、演講能力、協作能力、PPT制作能力、課堂參與程度和小組展示情況等。在基于人工智能的翻轉課堂教學模式下,學生評價包括課堂教學活動和學生自主學習活動兩個部分。通過語音識別和語義分析技術等人工智能技術,詳細記錄每一位學生在課堂上的發言情況、小組展示情況和教師對作品的點評情況。通過大數據分析技術,可以全面地了解學生在課外觀看教學視頻的情況和自測情況。因此,這種學生評價方式更加具有合理性和精準性。
五、結論
與傳統的ASDT課堂相比,基于人工智能下的翻轉課堂知識庫的構建促使教學逐步從靜態走向了動態,實現了以學生為主題,教師為主導的課堂教學理念,是適應新時期ASDT課程教學改革的必然。在基于人工智能的翻轉課堂教學模型下,一定程度上改進了翻轉課堂中的課堂教學、學生自主學習和效果評價等模塊,有效督促學生自主學習,幫助學生在線答疑,同時更加綜合地對學生進行考評,讓老師教學更加高效。人工智能技術的廣泛應用對于解決翻轉課堂教學當前所面臨問題的是較為理想的方案,它有助于提升翻轉課堂整體的教學水平,促進翻轉課堂的快速發展。
參考文獻:
[1]周宇、歐石燕:《面向關聯數據的高校機構知識庫構建方法研究》,《圖書情報工作》2016年第1期。
[2]劉清堂、毛剛、楊琳等:《智能教學技術的發展與展望》,《中國電化教育》2016年第6期。
[3]曾明星、周清平、蔡國民等:《軟件開發類課程翻轉課堂教學模式研究》,《實驗室研究與探索》2014年第2期。
[4]鐘曉流、宋述強、焦麗珍:《信息化環境中基于翻轉課堂理念的教學設計研究》,《開放教育研究》2013年第1期。
[5]胡立如、張寶輝:《翻轉課堂與翻轉學習:剖析“翻轉”的有效性》,《遠程教育雜志》2016年第4期。
[6]王紅、趙蔚、孫立會等:《翻轉課堂教學模型設計》,《現代教育技術》2013年第8期。
云計算、大數據、人工智能新興領域的崛起,推動信息技術全面滲透于人們的生產生活中。信息技術的核心在于計算機技術和通信技術。然而,雖然目前各個高校都開設了計算機基礎課程,但是其教學卻存在著諸多問題,導致該課程無法達到預期的教學效果。教育部在2012年《教育信息化十年發展規劃(2011-2020年)》,其中指明“以教育信息化帶動教育現代化,促進教育的創新與變革”[2]。因此,本文以華中師范大學計算機基礎課程教學為例,深入闡述了傳統計算機基礎課程教學的弊端,提出了在當前人工智能如火如荼的時代背景下,如何應用人工智能相關技術對傳統的計算機基礎教學進行改革的具體方案。該方案以創建網絡智慧課堂教學模式改革為主體,輔以教學觀念、知識體系和課程考核方式改革,以期對高校的計算機基礎課程教學有所裨益。
1傳統教學的缺陷
⑴課程的教學地位沒有引起足夠的重視一些高校為計算機基礎課程分配較少的學時(少于48學時),甚至有的專業將此課程設置為選修課。這種設置降低了該課程在教師和學生心目中的位置,導致了對該課程的忽視。同時,不少老師因為學時不夠,時間緊迫,僅僅講述與考試相關的內容,不考的一概不講。這導致學生的眼界受限,知識和能力受限,無法培養其全面綜合的計算機素質。還有的專業沒有將這門課給專業的計算機學院的老師講授,而是隨意安排授課人員。沒有經過系統專業訓練的教師缺乏足夠的知識儲備,很難講好這一門看似簡單的課程。⑵課程教學內容的制定與當今時代對于信息化人才的需求脫節一些高校的現狀是計算機基礎的課程教材知識陳舊[3]、質量堪憂,教材總是無法跟上知識更新的步伐,例如都2019年了還在講Office2010。有的高校由于缺乏對課程的重視,沒有對教材優中選優,而是基于利益的考慮,優先選擇自己院系編寫的教材。其教材內容是七拼八湊,沒有整體性、邏輯性和連貫性,更不用說前瞻性。這樣的教材,無疑對學生的學習設置了巨大的屏障。除此以外,一些院校的課程教學知識體系不夠明確和完善,教學大綱的制定不夠科學。從教學大綱中制定的學時分配來說,常常偏重實用性[4],常用計算機軟件操作占據了大部分的課時。這會讓教師在授課時輕理論而重操作,如此培養學生,非常不利于其計算思維的形成,對后續其他計算機相關課程的學習也是很大的傷害。⑶教學模式過于傳統,信息化水平較低從教學方式上來說,傳統的教學模式以教師課堂授課為中心,是以教師為主體的教學模式[5]。在這種模式下,教師仍然主要以填鴨式教學為主[6],無法通過課堂教學發現學生的個性化特點,并進行有針對性的教學。另外,雖然計算機基礎課程一般都配備了實驗課時,但是實驗課常常是采用教師布置上機任務、學生做完抽樣檢查的模式。這對于大課堂來說,教師的任務繁重,無法搜集到每一個學生的任務完成情況,無法清晰地掌握學生學習的實際情況和薄弱環節。而且,該課程缺乏相應的研討課時,很難讓學生對其所學知識進行深入思考和探究,以增強思辨能力和對課程的學習興趣。⑷課程考核方式不夠公平合理從考核方式上來說,該課程普遍采用“平時成績”+“期末考試”的加權方式對學生成績進行評定。平時成績多由考勤分所得,期末考試多采用機考模式。這種考核方式過于單一化、機械化,無法對學生進行全方位的評價。很多學生來到教室打考勤,但可能根本沒聽講,而是在睡覺或者玩手機。期末機考的公平合理性也是存在著很多的漏洞。例如機考的試題庫可以十年不變,分值的分配和難度的掌握都沒有經過系統的考量。甚至有的考試系統不夠穩定和安全,頻頻爆出Bug,嚴重影響了考試結果的真實性。
2新人工智能環境下對計算機基礎課程改革的具體方案
2012年開始,在隨著卷積神經網絡技術在視覺處理方面的應用取得巨大的成功之后,人工智能到達了有史以來的第三個爆發期。目前,深度學習技術在AlphaGo、無人駕駛汽車、機器翻譯、智能助理、機器人、推薦系統等領域的發展如火如荼。與此同時,人工智能技術在教育領域方面的應用已經興起。人工智能的教學產品也已有先例,例如基于MOOC平臺研發的教學機器人MOOCBuddy等等。基于人工智能的教育是融合云計算、物聯網、大數據、VR、區塊鏈等新興技術的增強型數字教育[2].在當前人工智能的大時代背景下,針對傳統計算機基礎的種種弊端,我們提出了如下教學改革方案。⑴改變教學理念,確立計算機基礎課程的重要地位計算機基礎作為高校的一門公共課,實則應當作為各個專業的學生后續的學習、科研的必修之課程。因此,高等學校應從源頭上確立該課程的重要地位,將該課程納入必修課范疇,并給與更充分合理的課時分配。除教學課時、實驗課時之外,需要為該課程增加一定的研討課時。任課老師必須是來自于計算機專業的人才。同時,定時舉辦關于該課程的教學培訓、教學研討會和教學比賽,改變教師的教學理念,從源頭上給予該課程足夠的重視。⑵優化教學內容,重新制定課程的教學知識體系教材是教師教學的主要依據,也是學生獲得系統性知識的主要來源。因此,教材對于教學的重要性不言而喻。教材的選取需要優中擇優,必要的時候可以根據自身院校的情況自己編寫,力求使用好的教材使教學事半功倍。在選定優質教材的基礎上,制定更加合理的教學大綱,優化計算機基礎課程的教學知識體系,突出計算機學科入門相關基礎理論知識的重要地位。對現有的過時內容進行更新,例如操作系統以Windows10的操作取代Windows7,Office這部分使用Office2019版本取代2010的版本,同時增加關于算法入門知識、程序設計入門知識以及人工智能、區塊鏈等前沿知識單元的介紹。以華中師范大學為例,我們在圖1中給出了該校計算機基礎課程的教學知識體系結構圖。⑶充分利用現代化的教學工具和人工智能技術,構建智慧課堂,改變傳統教學模式現代化的教學應當轉變以教師為核心的教學模式,更加突出學生的主體性地位。因此,在人工智能、物聯網、大數據等技術和蓬勃發展的情形下,應當改變傳統的課堂教學形式,充分利用現代化信息技術,將傳統課堂教學和網絡課堂教學模式相結合,構建智慧課堂。融合課堂教學身臨其境的效果與網絡課堂自主性強且方便師生交流的特點,通過師生之間多層次、立體化的互動,達到提升教學效果的目的。同時,建立功能強大、完善的學生實驗平臺,基于不同專業學生的不同特點和不同需求,進行個性化的作業設置。針對教師布置的實驗任務和學生的完成情況,結合在線網絡教學系統,通過傳感器及網絡數據,搜集學生的學習行為數據,并且使用人工智能算法進行智能分析,使教師對當前的學生的學習情況一目了然,并能引導學生對重點、難點的鞏固和掌握。研討課以學生為主體,按照所選課題進行分組調研、分組討論,刺激學生的學習興趣,培養其思辨能力。研討內容最終可以課程論文的形式上交至課程共享平臺,由教師和同學共同給出評分。這里,仍以華中師范大學為例,我們將在線教學系統、實驗課平臺、研討課共享平臺等集成為一個基于人工智能技術的網絡智慧教學綜合平臺系統。該系統主要包括用戶管理、在線教學、課堂互動、作業管理、考試管理、BBS系統、智能分析和平臺管理8個模塊,其主要功能如圖2所示。該系統采用C/S模式,系統的服務器選用Linux服務器,同時開發基于PC機的和手機端的客戶端系統,方便學生和教師隨時選用、更加靈活。在線教學模塊中的智能學習助理功能,能夠根據歷史用戶的學習行為和當前用戶的學習行為,自動地識別學習內容中的難點以及當前學生的難點內容,有針對性地對學生進行知識點強化。課堂互動模塊中,通過可穿戴式傳感器搜集學生的學習行為,用于后續智能分析模塊中對學生的學習態度和學習行為進行智能分析。在線作業評價模塊包括機器評價和教師評價兩個功能。機器評價是系統為學生作業(客觀題、主觀題)自動評分,其中主觀題的評分也是使用人工智能技術來實現。教師評分時可以參考機器評分,減少教師工作量。同時,教師評分為機器評分提供機器學習的經驗數據,促進機器評分更加智能。智能分析模塊能夠依據學生的在線課程學習模塊、課堂學習模塊、作業管理模塊等搜集到的學習行為數據進行綜合分析,促使教師深入了解學生的學習情況和個性化特點,提升教學的針對性,并且有助于后續對學生進行全面、綜合的分析和成績評定。所有系統模塊中使用到的智能分析技術包括基本的統計分析、以及各類機器學習算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改變傳統成績考核的方式在“教學”+“實驗”+“研討課”課程結構以及網絡智慧教學綜合平臺的輔助之下,學生的成績評定更加全面化、多元化、公平化、自動化[7]。平時成績中,除了教學綜合平臺的“課堂簽到”次數之外,還增加更多豐富多元化的考察信息,如:學生的課堂討論、在線課程學習和考核結果、平時作業完成情況,以及智能分析模塊中輔助分析的學習態度、學習能力、平時成績預測。期末上機考試系統也是智慧課堂綜合平臺的一個子模塊,是精心設計的穩定、安全、功能強大的子系統,方便教師每一年更新試題庫,修改bug。試題庫中的每一套試卷都應當經過科學的考卷質量分析,使其難度、覆蓋范圍在一個均衡、合理的范圍。最后,教師通過對各類平時成績指標以及期末考試成績加權,給出最終的學習成績。通過規范、合理、公平、全面的考核體系,獲得對學生公平、完善的評價機制,激勵學生并刺激教學良性運轉。
2教學方法研究
研究生教學應更突出學生的主體地位,注重發揮其學習的主動性和自覺性,為此,課程組結合課程特點,在教學方法進行了如下探索。
2.1加強教學設計
教學設計就是對教學活動進行系統計劃的過程, 是教什么(課程內容)及怎么教(組織、方法、策略、手段及其他傳媒工具的使用等)的過程[2]。在教學過程中,每節課授課前,堅持集體備課的原則,由課程組集體討論選定授課內容,補充閱讀文獻,根據授課對象與課程內容特點,確定課堂組織方式,采用的授課方式以研討式教學為主,給合講授、實驗、自學等。
2.2抓好課堂教學環節
教學方法與教學手段是保證課堂教學效果的關鍵。本課程授課對象主要為碩士研究生,他們的接受能力較強,有一定的求知欲。由于學員人數較少,授課方式可靈活組織。教室有完備的多媒體設備,基本的軟件實驗環境,教學過程可采用靈活教學方法、多種教學手段,提高教學效率,保證授課質量。
1) 以研討式為主的教學方式。研究生教學應堅持學術研究為導向,發揮學員在學習過程中的主動性和自覺性。由于研究生學員有一定的學習基礎與自學能力,教員可以在課前給學員布置預習內容,學員通過查閱資料、分析整理進而形成自己的觀點,使在課堂教學中師生互動交流成為可能,改變傳統的教員講,學員聽的灌輸式教學方式。研討式教學也有力于培養學員積極思考、創新思維的習慣與能力。
2) 教學手段的信息化。人工智能原理教學一個突出矛盾是知識點多、內容抽象、理論性強,但學時較少,因此,必須發揮現代教學手段的作用,提高教學效率。為此,課程組對每節課都精心設計了教學課件,課堂教學中以課件為主,輔以板書,充分利用多媒體信息量大、直觀等優點,改善教學效果;引入教學聲像資料,便于學員課下學習;設計演示程序,使部分比較抽象、不易于理解的內容,如子句歸結、搜索策略更形象直觀,易于學習和掌握。
3注重培養學員學術研究能力
學術能力是指專門對某一學問進行系統的哲理或理論研究的能力,它不僅包括思辨的方面,還包括實踐及感性的敏感力等方面。研究生階段學習的一個突出特點是要求學習的主體――研究生必須具備研究的能力[3]。論文寫作是培養、鍛煉、提高研究生的學術能力的重要途徑,在教學實施過程中,要求每個專題學習結束后,都要提交一份格式符合期刊發表要求的總結報告,題目可自行選定,也可由教員指定;內容既可以是人工智能該專題某一算法的實現,也可以是對某一問題的進一步研究,或者是對該專題最新研究進展的綜述。教員重點在以下幾個方面予以指導。
1) 選題準確。要求選題不能過于宏大,應以小題目反映大問題,具有一定的可研究性為宜。
2) 研究內容。研究目標明確,方法恰當,能夠提出自己的見解,所提觀點正確。
3) 論文結構。結構清晰、完整,論述嚴謹,表達規范。
4) 占有文獻豐富。撰寫過程中要有意識培養學員查閱科技文獻的能力,要求查閱反映最新研究成果的權威文獻。
4加強實驗環節教學
人工智能教學在進行各種理論知識講授的同時,還應重視實踐教學,把抽象的知識轉化為形象、直觀的實驗,讓學員真正理解人工智能的概念、本質、研究目標,從而提高學員多角度思維的能力和邏輯推理能力,進一步了解信息技術、計算機技術發展的前沿,培養他們對人工智能研究的興趣,激發對人工智能技術未來的追求。為此,課程組借鑒國內外知名大學人工智能實驗教學經驗,編寫了《人工智能原理實驗指導書》,圍繞問題表示、經典邏輯推理、不確定推理、搜索策略及簡單專家系統實現等教學內容提供了7組實驗供學員選擇。
例如,在狀態空間搜索一節教學過程中,先完成理論部分的教學,使學員對狀態空間基本概念、問題表示及求解方法有一個準確的認識,然后進行實驗教學。由學員自主完成重排九宮問題求解的程序,初始狀態和目標狀態如圖1所示,調整的規則是,每次只能將與空格(左、上、下、右)相鄰的一個數字平移到空格中[4]。實驗過程重點指導學員掌握狀態空間進行問題求解的關鍵步驟:問題表示和搜索策略。問題表示就是要確定該問題的基本信息及程序實現的數據結構,基本信息有初始狀態集合、操作符集合、目標檢測及路徑費用函數,數據結構可采用向量、鏈表等形式;搜索策略可分為盲目式搜索和啟發式搜索,可按照先易后難的原則,先實現盲目搜索中的廣度優先及深度優先搜索,在此基礎上再定義估價函數實現啟發式搜索。而在啟發式搜索實現過程中,又可以通過定義不同的啟發函數:如某狀態格局與目標節點格局不相同的牌數、不在目標位置的牌距目標位置的距離之和等加以比較,準確理解啟發函數的意義。通過實驗,學員加深了對課堂講授的理論知識的理解,能夠熟練地將狀態空間法運用于實際問題的求解,提高了工程實踐能力。
實驗教學組織方式可根據具體的實驗內容特點,采用上機編程實驗、演示程序驗證、模擬平臺開發、分組討論等多種形式進行。
5適度開展雙語教學
研究生的英語基礎普遍較好,基本都通過了國家公共英語四級考試,部分學員通過了六級考試,加之在本科階段還開設了專業英語課程,因此,在培養研究生人工智能知識的同時,我們要提高學員閱讀原版英文資料、用英語進行簡單科技寫作及對外學術交流的能力,適度開展雙語教學,對此,我們可采取以下基本方式。
1) 專業術語全部用英語表示。
在教學過程中用英語表達人工智能原理中的專業術語和主要概念,如Knowledge Representation(知識表示)、Depth-First Search(深度優先搜索)、Breadth- First Search(廣度優先搜索)等。
2) 以英文原版教材為教學參考書。
選定機械工業出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》為參考書,該書“是人工智能課程的完美補充。它既能給讀者以歷史的觀點,又給出所有技術的實用指南[5]?!?/p>
3) 加強英文文獻的閱讀。
在課程論文撰寫時,要求閱讀一定數量的外文文獻;在討論課中,鼓勵學員使用英語進行討論。
經過課程學習,學員都能準確掌握人工智能學科專業詞匯,英文運用能力得到一定提高,能較自如地閱讀原版英文專業資料,為進一步用英文進行學術交流及學術論文寫作打下基礎。
6考試與成績評定改革
考核方式采用傳統的試卷與課程論文、實踐環節等三部分組成,全面考查學員對基礎理論知識掌握情況以及理論聯系實際的能力,其中試卷占70%,課程論文占10%,實踐環節占20%。課程論文題目不作限制,由學員在課程學習階段結合某一專題選定題目,課程論文以選題意義、研究內容、論文結構、參考文獻及撰寫規范等指標為評價依據;實驗成績采用實驗過程考查、實驗結果驗收和實驗報告評閱相結合的考核方法,綜合評定。這樣做不但考核了學員人工智能基本理論掌握情況,也反映了學員的學術研究能力和工程實踐能力。同時,考核結合實際教學進程,改變了單一課終總結性考核的弊端。
7結語
經過課程組近兩年的教學方法研究與教學實踐,研究生人工智能原理課程教學收到較好的效果,但仍存在一些問題,如在課堂討論環節,個別學員準備不充分、討論不夠深入;課程論文撰寫選題隨意,文獻綜述不夠全面、準確,論文格式不夠規范等。在今后的授課中,課程組將根據授課研究生人數較少的特點,采取明確每名學員預習重點、加強課程論文交流等方式予以改進,力求取得更好的教學效果。同時,進一步充分利用便利的校園網平臺,開展“人工智能原理”網絡課程建設,購買或自主開發網絡教學資源,引導學員利用網絡資源進行個性化自主學習,增強教學過程的信息化程度。
參考文獻:
[1] 王永慶. 人工智能原理與方法[M]. 西安:西安交通大學出版社,2002:1.
[2] 李志厚. 國外教學設計研究現狀與發展趨勢[J]. 外國教育研究,1998(1):6-10.
[3] 肖川,胡樂樂. 論研究生學術能力的培養[J]. 學位與研究生教育,2006(9):1-5.
[4] 周金海. 人工智能學習輔導與實驗指導[M]. 北京:清華大學出版社,2008:204.
[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:機械工業出版社,2009:754.
Reform on Postgradrates Artificial Intelligence Course Teaching
TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei
人工智能(Aritificial Intelligence,英文縮寫為AI)是一門綜合了應用數學、自動控制、模式識別、系統工程、計算機科學和心理學等多種學科交叉融合而發展起來的的一門新型學科,是21世紀三大尖端技術(基因工程、納米科學、人工智能)之一。它是研究智能機器所執行的通常與人類智能有關的職能行為,如推理、證明、感知、規劃和問題求解等思維活動,來解決人類處理的復雜問題。人工智能緊跟世界社會進步和科技發展的步伐,與時俱進,有關人工智能的許多研究成果已經廣泛應用到國防建設、工業生產、國民生活中的各個領域。在信息網絡和知識經濟時代,人工智能現已成為一個廣受重視且有著廣闊應用潛能的前沿學科,必將為推動科學技術的進步和產業的發展發揮更大的作用。因此在我國的大中專院校中開展人工智能這門課的教學與科研工作顯得十分緊迫。迄今為止,全國絕大多數工科院校中的自動控制、計算機/軟件工程、電氣工程、機械工程、應用數學等相關專業都開設了人工智能這門課程。南京郵電大學自動化學院自2005年成立至今,一直將“人工智能”列為自動化專業本科生的選修課程,到目前為止已經有八年的歷史了。由于南京郵電大學是一所以郵電、通信、電子、計算機、自動化為特色的工科院校,因此,學校所開設的許多專業都迫切需要用人工智能理論和方法解決科研中的實際問題。在問題需求的推動下,南郵人經過多年的努力工作,在人工智能科研方面取得了豐碩的成果,如物聯網學院所開發的現代智能物流系統、自動化學院所開發的城市交通流量控制與決策系統,為本課程的開設提供了典型的教學案例。我們結合近幾年的實際教學經驗,從優選教材、考核方式、教學內容調整、教學手段的改進和實踐教學等方面對人工智能課程教學方法進行了總結歸納。
一、優選教材
目前,國內有關人工智能課程的中英版教材種類非常多,遵循實用、簡單、夠用的原則,再經過授課老師和學生們的共同調研,我們選用由中南大學蔡自興教授主編的《人工智能及其應用》第三版作為南郵本課程的授課教材。本書覆蓋的人工智能知識體系比較全面,包含知識表示、搜索推理、模糊計算、專家系統等。本書主要針對計算機、自動化、電氣工程等本科專業的學生所編寫,內容基礎,難度適中。蔡教授所編寫的這本教材全面地介紹了人工智能的研究內容與應用領域,做到了內容新穎、簡單易懂、兼顧基礎和應用,受到了全國廣大師生們的一致好評,多年的教學實踐證明我們所選擇的教材是恰當的、正確的。
二、考核方式
在全國大部分高等院校,“人工智能”這門課大都選擇開卷考試的方式來進行考核。為了強化學生對人工智能這門課基礎知識的掌握,南京郵電大學自動化學院選用閉卷考試的方式來進行考核。為了打消部分學生想在期末閉卷考試中通過作弊手段來完成人工智能這門課考核的僥幸心理,我們加強了對學生平時考勤成績、課下作業成績和實驗成績的考核,從而杜絕了“一紙定成績”的現象。我們對人工智能這門課的最后期末成績是按如下權重來劃分的:平時考勤成績占10%、課下作業成績占10%、實驗成績占20%、最后的期末考試卷面成績只占60%。為了克服國家現行教育體制的弊端,避免學生“機械式”地的應對教學和考試,我們對考試題型進行了調整,不再是以往的填空、選擇、簡答等題型,而是改為以解決實際問題為導向的應用題型為主,這樣學生只需要在理解授課內容的基礎上利用自己的思維來解題就可以了,這也體現了國家目前正在提倡的應用型教學導向。
三、教學內容調整
對于本科生而言,人工智能這門課程所需要講授的內容實在太多,由于課時所限,我們必須精簡教學內容,讓學生在掌握基礎知識的同時,也能夠了解它的具體應用。因此,我們將人工智能這門課程的教學內容分為兩個部分:第一部分是基本理論和方法,包括人工智能的概述、知識表示方法、確定性推理方法等;第二部分為人工智能研究成果的具體應用,包括神經元網絡計算、模糊智能計算、專家知識庫系統、機器語言學習等。通過對教材內容的合理調整和安排,使得授課計劃能夠比較全面地覆蓋了人工智能這門課程的基本知識點,從而滿足了學生們的求知需求。
四、教學手段的改進
(一) 激發學生的學習興趣
經過長時間的教學我們發現,在選修“人工智能”這門課程時,每個學生的心中所想各有不同,這些學生在剛開始學習時興趣還比較強烈,但隨著教學內容變得越來越抽象,學生逐漸對這本課的學習失去了信心,甚至上課時間不去聽課,使授課教師對教學也漸漸失去了信心,導致惡性循環,嚴重影響了教學質量。針對這種現象,我們認為,在開課前充分激發學生的學習興趣是很有必要的。我們要結合學校的實驗條件,開課前給學生演示“機器人醫療服務”實驗,通過該實驗的演示,讓學生們看到機器人能夠給病人提供多項人性化的服務,理解人工智能技術在開發醫療服務機器人多項關鍵技術中的應用,讓學生在開課前能夠對本課程的學習產生極大的興趣,實踐證明這種方法是有效的。
(二) 借助多媒體教學
多媒體教學是現代教學過程中一種非常重要的形式,它往往根據教學目的和學生們的特點,通過合理的設計、選擇教材內容,應用公式、圖形、文字、視頻等多種媒體信息進行有機組合并通過電腦和投影機顯示出來,與傳統教學手段相結合,形成合理的教學過程結構,達到最優化的教學效果。人工智能這門課具有針對性強、內容抽象、公式繁瑣等特點,學生學習起來比較困難,為了讓學生生動、形象地學習該課程,我們在教學過程中充分利用了多媒體技術來組織教學。例如在課堂教學過程中播放南郵自動化學院梁志偉博士帶領學生所開發的“智能足球機器人”比賽片段;讓學生在線觀看北京大學工學院謝廣明博士帶領學生所開發的“自主視覺機器魚”錄像片段等。在講解某些重要的求解算法時,借助Matlab軟件和投影機,直接展現該算法的求解過程,從而改善了課程教學的形式,提高了教學質量。
(三)提倡課堂辯論
我們在教學過程中打破了傳統的“老師講課學生聽課”的教學模式,多次組織課堂辯論,辯論的主題包括人工智能研究過程中出現的技術困惑、人工智能研究成果轉化中的市場前景等。如組織了“電腦PK人腦”“電腦是否讓電視消失”“電腦的未來發展方向在哪里”等一系列辯論會。經過激烈的辯論,無論正方還是反方都感覺自己收獲很大,增長了知識,開闊了眼界。在教學過程中通過將學生由“被動聽課”角色變換為“主動參與”角色,大大地調動了學生的學習積極性,從而提高了課堂教學質量。
五、實踐教學
實踐教學是課堂教學不可缺少的重要組成部分,通過讓學生親自動手實驗來對理論知識進行檢驗和應用是目前國內外各個大學提高學生綜合素質、增強學生市場競爭力的重要手段。人工智能實驗教學的目的是讓學生通過親自動手體會授課中的各種智能控制算法,從而使學生能夠更加形象地掌握課本知識。人工智能教學計劃安排了4學時實驗課,設置了“傳教士和野人過河”“機器人路徑規劃”這兩個人工智能問題,要求學生獨立完成這2個實驗題目的編程,并書寫實驗報告。通過實驗,學生動手實踐了課堂上所掌握的理論知識,加深了對智能算法的理解。
人工智能是一門實用性較強的課程,我們總結了近幾年來的教學經驗,從優選教材、考核方式、教學內容調整、教學手段的改進和實踐教學五個方面對人工智能課程教學進行了總結。從學生的反饋來看,我們所總結的教學經驗對于指導新教師講授“人工智能”這門課程具有積極的作用,需要指出的是,我們仍有很多不足之處,需要在以后的教學過程中不斷努力完善,提高自己的教學能力,爭取更好的教學效果。
參考文獻
[1]蔡自興,徐光佑.人工智能及其應用[M].北京:清華大學出版社,2003.
[2]路小英,周桂紅,趙艷等.高等農業院校《人工智能》課程的教學研究與實踐[J].河北農業大學學報:農林教育版,2007,9(4):66-68.
[3]馬建斌,李閱歷,高媛. 人工智能課程教學的探索與實踐[J].河北農業大學學報:農林教育版,2011,13(3):330-332.
中圖分類號:TP18 文獻標識碼:A 文章編號:1671-2064(2017)01-00218-01
人工智能包含三個層次:計算智能、感知智能和認知智能,訊飛超腦計劃是包含模擬人腦的知識表示與推理、類人學習機制與新知識的獲取、機器加載專業知識成為專門的教育領域。訊飛超腦計劃是基于全球關于人工神經網絡的深度學習研究,簡單來說就是希望未來訊飛超腦計劃能夠將人工智能從只是簡單地能聽會說到能夠深度思考相關問題的科技轉變。人工智能的不斷開拓創新是為了幫助人類能夠更好地生活,我們應該注重人工智能的發展推進,將其廣泛合理地應用到生活的實際中去。
1 訊飛超腦計劃目前取得的階段學習研究成果
1.1 訊飛超腦計劃關于我國現階段關于高中生學習教育的人工智能成果
隨著近年來教育電子多媒體設備的投入普及使用,使目前的高中老師在課堂上更習慣用電子化的教學方式來替代傳統的板書課本單一枯燥的教學,與此同時,現階段高中生也同樣具備使用移動互聯網的條件,這樣就使得科大訊飛超腦計劃的教育產品可以形成以下的模式如圖1所示。
采用此智能的學習模式可以使我國的高中生接受公平的最好的教育,這就需要借助人工智能的幫助來使老師提高自身的教育水平,使高中生豐富并開闊自身的視野。課堂教學包括了在線課堂、暢言交互式多媒體教學系統以及暢言智能語音等,這種新穎的課堂教學模式使原本單一的教學方式變成了思想上任意遨游的知識海洋;智能考試包含了標準考場、英語四六級網上閱卷、普通話與英語口語測試等方面,智能考試系統從字跡工整的程度、詞匯量的豐富度、語法的正確性與通順性等多個方面來評判考試試卷,加上多年來的不斷改進,人工智能的評判方法跟相關專家的人工試卷評判的相似度相差無幾,很大程度地增加了試卷評判的效率性與公平性;學習產品與教育評價更是覆蓋到了從低到高的各個層面的產品組織結構,更有利于高中生的學習與應試教育的公平性。
1.2 訊飛超腦計劃對于提高人類生活水平的成果
隨著人工智能技術在經濟、教育、文化、娛樂等領域的不斷應用,使人們的生活質量水平得到了很大程度的提高,人工智能帶來的方便快捷對于人類的發展進化與物質文化的進步產生了不可忽視的作用。隨著訊飛超腦計劃的推出,一方面,可以把人類從繁重的勞動中解放出來,很大程度地提高人類生產生活的效率與質量;另一方面,人工智能的進步會極大地革新人類的思維方式,使人們能夠多角度地認知世界,加深對人類對自身所處的宇宙地位的思考,利于人不斷地探索奧秘,進一步推進人類社會的進步。
2 訊飛超腦計劃下人工智能對于未來生活的影響及其發展趨勢
2.1 訊飛超腦計劃下人工智能對未來生活的影響
由于訊飛超腦計劃是感知智能結合認知智能的再創新,使得未來機器將會實現高水平的感知智能,具有更多的包括語音識別、手寫識別以及圖像識別的更多智能感知能力與實現包括智能客服、人機交互等的取代人類腦力勞動的認知智能突破。所以說訊飛超腦計劃下的人工智能在未來的教育、經濟、文化、社會結構等未來生活的各個方面都會產生重大影響。在教育上,人工智能的應用優化了課堂結構,使學生能夠實時接受外界的新知識以及與時俱進的教育模式改革;在經濟上,人工智能的高效能與高效率會明顯提高經濟效益,用人工智能來進行財務管理有助于縮減不必要的人工勞務開支與相關的培訓費用,利于經濟的變革與提高;在文化上,人工智能對于人類語言文化與圖像處理上的優勢日益凸顯出來,可以確定的是人工智能的發展將會深入到人類生活的各個層面中去。
2.2 訊飛超腦計劃下人工智能的未來發展趨勢
隨著人工智能的不斷演進,人工智能從最初能存會算的計算智能階段,到后來的能聽會說、能看會認的感知智能階段,最后再到訊飛超腦計劃下提出的讓機器能理解、會思考的認知智能階段,未來的人工智能在語言理解、知識表達、聯想推理以及自主學習等方面都將會取得很大的進展。
3 結語
人工智能對于未來生活的影響是多方面的,在未來生活的各個方面都十分顯著。與此同時,訊飛超腦計劃下的人工智能不斷的改革創新與發展,也將更快地推動人類的發展,人工智能與人類的生活是互相影響又相互制約的。人工智能的不斷發展給人類的未來生活帶來了很大程度的改變,人類在不斷開拓人工智能的領域時也應不斷提高自身能力與素養,以適應人工智能帶來的不斷創新和改變。
參考文獻:
1.2基于人工智能知識體系的教學案例庫建設根據所確定的教學內容、知識重點和知識難點,從國內外經典教材、科研項目、研發設計、生產建設以及國內外人工智能網站等多種途徑,收集案例素材,加以整理,撰寫各知識要點的教學案例及其內容。表1給出基于人工智能知識體系的教學案例示例。
2人工智能課程教學案例的詳細設計
在教學案例具體設計時應包括章節、知識重點、知識難點、案例名稱、案例內容、案例分析過程、案例教學手段、思考/討論內容等案例規范,分別從以下單一案例、一題多解案例和綜合應用案例3種情況進行討論。
2.1單一案例設計以人工智能課程中神經網絡課堂教學內容為例,介紹基于知識點的單一案例的設計。神經網絡在模式識別、圖像處理、組合優化、自動控制、信息處理和機器人學等領域具有廣泛的應用,是人工智能課程的主要內容之一。教學內容主要包括介紹人工神經網絡的由來、特性、結構、模型和算法,以及神經網絡的表示和推理。這些內容是神經網絡的基礎知識。其重點在于人工神經網絡的結構、模型和算法。難點是人工神經網絡的結構和算法。從教學要求上,通過對該章節內容的學習,使學生掌握人工神經網絡的結構、模型和算法,了解人工神經網絡的由來和特性,一般性地了解神經網絡的表示和推理方法。采用課件PPT和演示手段,由簡單到復雜,在學生掌握人工神經網絡的基本原理和方法之后,再講解反向傳播BP算法,然后運用“手寫體如何識別”案例,引導學生學習理解人工神經網絡的核心思想及其應用方法。從國外教材中整理和設計該案例,同時應包括以下規范內容。章節:神經網絡。知識重點:神經網絡。知識難點:人工神經網絡的結構、表示、學習算法和推理。案例名稱:手寫體如何識別。案例內容:用訓練樣本集訓練一個神經網絡使其推廣到先前訓練所得結果,正確分類先前未見過的數據。案例分析過程:①訓練數字識別神經網絡的樣本位圖;②反向傳播BP算法;③神經網絡的表示;④使用誤差反向傳播算法訓練的神經網絡的泛化能力;⑤一個神經網絡訓練完畢后,將網絡中的權值保存起來供實際應用。案例教學手段:手寫體識別的神經網絡演示。思考/討論內容:①訓練改進與權值調整改進;②過學習/過擬合現象,即在一個數據集上訓練時間過長,導致網絡過擬合于訓練數據,對未出現過的新數據沒有推廣性。
2.2一題多解案例設計一題多解案例有助于學生把相關知識點聯系起來,形成相互關聯的知識網絡。以人工智能課程中知識及其表示教學內容為例,介紹一題多解案例的設計。知識及其表示是人工智能課程三大內容(知識表示、知識推理、知識應用)之一。教學內容主要包括知識表示的各種方法。其重點在于狀態空間、問題歸約、謂詞邏輯、語義網絡等知識表示方法。難點是知識表示方法的區別及其應用。從教學要求上,通過對該章節內容的學習,使學生掌握利用狀態空間法、問題歸約法、謂詞演算法、語義網絡法來描述和解決應用問題,重點掌握幾種主要知識表示方法之間的差別,并對如何選擇知識表示方法有一般性的了解。通過講解和討論“猴子和香蕉問題”案例,來表示抽象概念。該案例從國內外教材中進行整理和設計,同時包括以下規范內容。章節:知識及其表示。知識重點:狀態空間法、問題歸約法、謂詞邏輯法、語義網絡法等。知識難點:知識表示方法的區別及其應用。案例名稱:分別用狀態空間表示法與謂詞邏輯法表示猴子和香蕉問題。案例內容:房間內有一只機器猴、一個箱子和一束香蕉。香蕉掛在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多種知識表示方法表示和求解該問題?案例分析過程:①狀態空間法的解題過程。用n元表列表示該問題的狀態;定義問題的操作算符;定義初始狀態變換為目標狀態的操作序列;畫出該問題的狀態空間圖。②謂詞邏輯法的解題過程。定義問題的常量;定義問題的謂詞;根據問題描述用謂詞公式表示問題的初始狀態、中間狀態和目標狀態。案例教學手段:猴子和香蕉問題的演示。思考/討論內容:①選擇知識表示方法時,應考慮哪些主要因素?②如何綜合運用多種知識表示方法獲得最有效的問題解決方案?
2.3綜合應用案例設計與單一案例、一題多解案例相比,綜合應用案例能更加有效地啟發學生全方位地思考和探索問題的解決方法。以機器人行動規劃模擬為例,介紹人工智能綜合應用案例的設計,該案例包括以下規范內容。章節:人工智能綜合應用。知識重點:人工智能的研究方向和應用領域。知識難點:人工智能的技術集成。案例名稱:機器人行動規劃模擬。案例內容:綜合應用行為規劃、知識表示方法、機器人學、神經網絡、人工智能語言等多種人工智能技術與方法,對機器人行動規劃問題進行描述和可視化。案例分析過程:①機器人行為規劃問題求解。采用狀態歸約法與分層規劃技術,將機器人須完成的總任務分解為若干依序排列的子任務;依據任務進程,確定若干關鍵性的中間狀態,將狀態對應為進程子規劃的目標;確定規劃的執行與操作控制,以及機器人過程控制與環境約束。②基于謂詞邏輯表示的機器人行為規劃設計。定義表達狀態的謂詞邏輯;用謂詞邏輯描述問題的初始狀態、問題的目標狀態以及機器人行動規劃過程的中間狀態;定義操作的約束條件和行為動作。③機器人控制系統。定義機器人平臺的控制體系結構,包括反應式控制、包容結構以及其他控制系統等。④基于神經網絡的模式識別。采用神經網絡方法以及BP算法對桌面茶壺、杯子等物體進行識別,提取物體圖形特征。⑤機器人程序設計語言。運用人工智能語言實現機器人行動規劃行為的可視化。案例教學手段:機器人行動規劃的模擬演示。思考/討論內容:人工智能將會怎樣發展?應該在哪些方面進一步開展研究?
3案例教學環節和過程的具體實施細節
人工智能案例教學的實施面向筆者所在學院軟件工程專業三年級本科生展開。具體實施細節如下。(1)教學內容的先進性、實用性和前沿性。引進和整合國外著名人工智能教材內容,保證課程內容具有先進性。同時將前沿人工智能的研究成果與技術有機地融入課程案例教學之中。(2)案例教學的創新教學模式。在教師的引導下,將案例中涉及的人工智能內容推廣到對人工智能的一般性認識。案例的教學過程,成為認識人工智能、初步運用人工智能的理論與方法分析和解決實際應用問題的過程,使學生具備運用人工智能知識解決實際問題的意識和初步能力。在課程教學中,打破國內常規教學方式,建立和實施開放式案例教學模式。采用動畫課件、錄像教學、實物演示、網絡教學等多種多媒體教學手段,以及集中講授與專題討論相結合的教學方式將理論、方法、技術、算法以及實現有機結合,感性認識與理性認識相結合,理論與實際相結合,極大地激發學生自主和創新性學習的熱情。(3)“課堂教學—實踐活動—現實應用”的有機融合。在案例教學過程中,從傳統教學觀以學會為中心轉化為創新應用型教學觀以創新為中心,以及從傳統教學的以課堂教學為中心轉化為以課堂教學與實踐活動并重為中心,構造具體問題場景以及設計教學案例在情境中的現實應用,加深學生對教學內容的理解,同時提高學生的思考能力和實際綜合應用能力。
隨著物聯網、大數據、5G及人工智能等信息技術的發展,為了應對中國產業變革及新一輪的科技革命,適應“中國制造2025”國家戰略需要及產業經濟創新發展,同時將國際工程教育思想本土化,“新工科”應運而生[1]。信息技術發展催生出了人工智能相關的專業,國內高校紛紛設立了智能科學與技術專業。近年來,人工智能技術的發展引領著人類社會正逐漸走進智能社會,人工智能將深刻影響人類社會。隨著人工智能的進一步發展,高等教育的價值也將進一步提高[2]。因此,各高校應盡快建立與新工科相一致的智能科學與技術專業,并深入研究我國人工智能的人才培養體系、課程設置、實驗平臺及成果轉化等方法,改革傳統人工智能的教育教學方法,形成有新工科特色的智能科學與技術專業工程教育方法。由于傳統的專業是按學科劃分的,因此,目前的智能科學與技術專業課程體系以理論為主,強調學科知識的系統性和完備性[3]。人工智能導論作為智能科學與技術專業的核心課程,同時也是人工智能“入門性”和“引導性”的課程。但是,目前人工智能導論的課程設置上主要存在課程內容陳舊、實踐課程不足、教材理論過強、教學模式老舊及實踐教學與企業需求不適應等問題。尤其是人工智能導論課程,缺乏實踐教學將會降低學生學習人工智能的興趣和積極性。因此,為了解決這些問題,并使高校跟上人工智能時代的腳步,抓住高等教育發展的新機遇,進行面向新工科的人工智能導論實踐教學模式探索具有重要的現實意義。
1人工智能對新工科人才的新要求
1.1具備多學科交叉知識。人工智能導論是一個多個學科交叉而成的一門課程。人工智能導論主要包括知識系統、智能搜索技術、腦科學、機器學習、神經網絡、支持向量機、專家系統、智能計算及分布式智能等內容[4]。因此,一個合格人工智能專業人才需要具備多學科知識。1.2具備多領域應用能力。人工智能導論的應用領域廣泛,基本包含工業、農業及社會生活的各個行業(如工業生產、通信、醫療、金融、社會治安、交通領域及服務業等)[5]。人工智能導論課程要求學生在學好理論前提下也應該掌握各行業的相關知識,只有這樣才能提高人工智能技術在各領域的應用。1.3具備人工智能創新創業精神。目前,創新驅動發展成為了我國現階段發展的重要力量,人工智能成為經濟發展的新引擎[5]。在大眾創業、萬眾創新的號角下,人工智能技術作為創新創業過程中的一個大趨勢。因此,當今新形勢下培養具有創新創業精神的人工智能專業人才對我國經濟發展及大學畢業生創新創業具有重要意義。1.4具備人工智能人文素養。人的內在品質就是人文素養,人文科學的知識水平和研究能力是人文素養的重要組成部分,人文素養是人文科學體現出來的以人為研究對象和中心的精神[6]。人工智能對人類社會帶來的是便利還是帶來災難,關鍵是使用者的思想道德和人文素養。因此,培養具有人文精神的人工智能專業人才具有重要的意義。
2人工智能導論課程教學現狀
目前,許多高校已經認識到傳統的人工智能導論課程已經不能適應社會和學生發展的需要。尤其是地方普通高校在師資、科研及學科力量薄弱情況下進行人工智能導論的實踐教學。目前人工智能導論的課程設置上主要存在的問題如下:⑴本科生課程內容陳舊。近年來,隨著云計算、大數據、5G等信息技術的快速發展,也帶動人工智能技術發展日新月異。對于高校來說,要緊跟人工智能技術前沿,傳授學生的知識也要緊跟人工智能的發展。目前,雖然也出現了不少新的人工智能導論教材,但在課堂上能夠教學的新內容仍然不多,教材內容仍然集中在傳統的人工智能技術(如問題求解、知識表示、歸結原理及經典推理等技術)上。⑵研究生課程內容重疊。研究生的人工智能導論課程應作為本科生課程的一個延續,但部分高校對研究生人工智能導論課程的教學重視不夠。很多本科生已經學過的內容在研究生階段又進行了重復。因此,在新工科背景下培養高層次的人工智能人才,就必須要在研究生階段加強新工科人才實踐能力的培養,選擇合理的人工智能導論課程,改革研究生階段人工智能導論的教學理念和教學模式。⑶實踐課程不足。實踐教學是提高人工智能新工科人才能力的重要路徑。目前,大多數院校的人工智能導論課程理論與實踐聯系不夠緊密,對學生實踐能力的培養不夠,只知道理論,而不進行實際的實踐應用就不能成為合格的人工智能新工科人才。另外,大多數地方高校的人工智能實驗室建設投入不足,實驗條件差,驗證性的實驗較多,實驗課時不足,學生對人工智能新技術的接觸不夠。⑷人工智能導論教材理論性過強。目前,現有的人工智能導論教材以理論為主,缺乏人工智能實踐內容。在課程教學過程中學生經常會感覺索然無味,當實踐課程開設不足時,這種情況會非常明顯。學生會漸漸的對人工智能導論課程失去興趣和熱情,最終會導致課程的教學質量和效果下降,不能達到新工科人工智能專業人才培養的預期。⑸教學模式老舊。人工智能導論是多學科交叉的課程,課程內容理論性強、抽象、多知識點是新工科的特點。然而,大多數地方高校仍然采用過去的課堂教學模式(即“教師講、學生聽”的教學模式),這種單向灌輸的教學方式以教師為主,學生的主動性不夠,只是在被動接收知識。學校這種重視理論不重視實踐的教學模式,在一定程度上影響了新工科人才的實踐能力,從而導致教學內容與企業社會需求脫節。
3人工智能導論實踐教學初探
3.1人工智能導論課程實踐平臺建設。為了提高學生對實踐教學的興趣,南陽師范學院計算機科學與技術學院在人工智能導論授課過程中廣泛應用多種計算機實驗教學平臺,如采用開源的PaddlePaddle百度飛槳深度學習平臺,希冀一體化人工智能實踐教學平臺及大數據綜合實驗平臺。教師可以在實踐教學過程中方便的使用這些平臺進行授課,學生也可以在課堂中跟隨老師完成相關實驗,并能夠在課下進行相關實驗練習及提交作業。3.2人工智能導論課程實驗內容優化。在人工智能導論實踐教學過程中,以學生興趣為導向,開展相關應用課程實驗,南陽師范學院計算機科學與技術學院對人工智能導論實驗課程內容進行優化。優化后的主要實驗課程包括搜索優化算法實現、智能計算實現、貝葉斯分類實驗、最近鄰算法實驗、機器學習實驗及神經網絡實驗。最后,通過期末課程設計進一步提高學生解決實際問題及創新創業的能力。3.3人工智能導論實踐教學模式改革。⑴校企合作為使人工智能導論實踐教學不與企業脫節,校企合作是關鍵。應積極派遣教師進企業進修,了解企業需求,并提高教師的工程能力。從2018年以來,南陽師范學院計算機科學與技術學院每年暑假期間累積派遣教師58人/次前往百度、中興、科大訊飛、神舟數碼及江蘇傳智播客公司等進修培訓。同時已經在固定時間邀請相關企業講師到學校進行人工智能方面的項目教學。建立起了具有地方區域特色的師資隊伍及校企協調的實踐教學模式,從而避免人工智能導論課程實踐與企業實際脫節。⑵“雙導師”負責制人工智能導論實踐課程實行“雙導師”制,邀請企業中實踐經驗豐富的人才任教或任職,校企合作建立實踐教師指導團隊,改革教學策略及教學方法,以項目為牽引,將人工智能導論實踐課程作為第二課堂學分。還要積極制定人工智能相關的科技作品競賽的獎勵機制,積極引導學生參加各種人工智能相關的比賽,從而進一步提高學生在創新實踐方面的能力。⑶采用案例教學法以案例導入進行教學,提高學生興趣。首先,從人工智能競賽的部分賽事中、(如百度的人工智能大賽,“2020年全國人工智能大賽”,“2020中國高校計算機大賽人工智能創意賽”等)中選取貼近實際問題的案例作為人工智能導論實踐課程的案例來源。然后,采用目前主流的人工智能開發軟件進行算法代碼的編寫,引導學生采用Python語言調用第三方接口庫進行算法的實現。最后,讓學生使用主流的編程語言(如C++、Java等)開發完善算法或進行系統設計與實現。
4結束語
在新工科背景下,人工智能導論作為智能科學與技術專業的基礎核心課程,人工智能人才培養應注重提高學生解決問題的能力。在這種背景下,筆者結合近年來了解到的企業需求和上課的實際,對人工智能導論實踐教學模式進行初探,具體如下:①校企合作,構建人工智能實踐平臺;②建立案例庫,優化實踐的內容;③校企“雙導師”制,采用案例教學,從而進一步提高學生在創新實踐方面的能力。
參考文獻:
[1]楊晴,王曉墨,成曉北等.新工科背景下的新能源科學與工程專業——哈佛大學工科教育在學科交叉方面的啟示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,羅娟.人工智能時代的高等教育之變與不變[J].黑龍江高教研究,2020.2:41-44
[3]陳義明,劉桂波,張林峰等.智能科學與技術專業課程體系建設的理論思考[J].計算機教育,2020.309(9):103-107
[4]劉永,胡欽曉.論人工智能教育的未來發展:基于學科建設的視角[J].中國電化教育,2020.2:37-42
人工智能是一門研究機器智能的學科,是在研究人類智能行為規律的基礎上,利用人工的方法和技術,研制智能機器或智能系統來模仿、延伸和擴展人的智能,實現智能行為。在知識經濟向智能經濟高度發展的今天,人工智能具有重要的理論意義和社會價值。人工智能理論已經滲透到各個領域,人工智能技術也得到廣泛應用,許多研究成果已經進入人們的生活。
人工智能課程是一門多學科交叉的課程,具有很強前沿性,涉及哲學、認知科學、行為科學、腦科學、生理學、心理學、語言學、邏輯學、物理學、數學等眾多領域;涉及面寬,內容廣泛,更新快。人工智能課程的開設能夠更好地培養學生的創新思維和技術創新能力,培養學生對計算機前沿技術的前瞻性,提高他們的科技素質和學術水平[1]。
人工智能課程內容的廣泛性、前沿性和應用性特點決定了授課方法的多樣性。與本科生相比,研究生在教育目標和身心特征方面都有較大的區別。筆者多年從事研究生人工智能課程教學工作,現總結多年教學經驗如下。
1研究生培養目標及其教學特點
研究生教育階段的教育目標是使研究生形成具有個性化的研究品格、研究定向和研究視野,以具有獨立思考并獲得獨創研究成果的能力[2]。從這一意義上講,個性化是研究生教育培養目標的構成主體。尤其隨著我國經濟持續高速增長,社會對知識創新、新經濟生長點的期望值增大,這就要求我國研究生教育在其培養目標的定位上不僅要重視人才培養的高層次性,更要重視創新能力、實踐能力和創業精神的培養。并且,研究生身心發展已較成熟,具有較穩定的個性特征,思維力強,具有較高的專業性思維意識和創造力,為獨立地進行專業研究活動提供了心理上和智力上的保證。而且,研究生已具備了基礎理論和專業知識,特別是有一定工作經歷的研究生,他們不僅有本科教育階段的知識積累,也有應用這些知識的經驗,對于擴大其專業知識領域并進行研究有著積極主動的態度??傊?,從年齡構成及身心特征上講,研究生適應高層次、跨學科知識領域的學習和研究。
研究生的特征及其教育目標決定了研究生教學不應該是由教師講授已定論的知識,而應是以教學為基本依托,通過教學提出具有研究性、探索性、未確定性甚至是尚存爭議性的課題,激勵研究生獨立思考和質疑,讓他們在思考和質疑的過程中提出問題,培育他們發現問題、提出質疑的科學批判精神,訓練并提高其創新能力、實踐能力和創新精神。創新精神和創新能力主要表現在具有健全的人格、強烈的責任感、開放的心態、團結合作的精神、嚴謹科學的思維能力和創新思維方式。
個性是創新的源泉,研究生課程體系的設置應該具有一定的靈活性,依據研究生不同的知識基礎和研究定向,設置具有彈性化的課程,使研究生的個性化得以凸顯。另外,為提高研究生專業研究和創新能力,在課程教學中,也應凸顯教學的研究性和專業性,重視專業領域背景知識和研究方法的講授,開展跨學科、非專業知識的教學,教學內容應涵蓋專業領域的研究熱點、難點、爭議問題和最新研究動態,還應包括交叉學科、邊緣學科的研究趨勢,以擴展學生的視野[3]。也就是說,研究生教學既要凸顯研究生的個性化特點,又要凸顯內容的學術性和研究的指向性。
2人工智能課程的特點
2.1多學科交叉,具有很強的前沿性
人工智能是一門多學科交叉的課程。課程內容的理解需要運用多學科知識和較強的邏輯思維能力,多學科的知識相互聯系、相互交叉,融合形成新的知識,成為新的思維方法和綜合能力的萌發點。通過課程學習,學生可以通過不同學科知識的融合來達到對原有知識的超越,用一種全新的思維方法來思考所遇到的問題,提出新的解決辦法。這也是創造力的迸發和智能的飛躍。具有了知識的廣度和深度才具有融會貫通、創新的可能,人工智能課程的開設能夠更好地培養學生的創新思維和技術創新能力,為學生提供一種新的思維方法和問題求解手段。
2.2涉及面寬,內容廣泛,更新快
人工智能課程是一門知識點較多的課程,它以概率統計、離散數學、數據結構、計算機編程語言、數據庫原理等課程為基礎,涵蓋了模式識別、機器學習、數據挖掘、計算智能、自然語言理解、專家系統等眾多研究方向,內容涉及面廣,概念抽象,不易理解。并且,人工智能課程內容更新快,近年來人工智能科學的快速發展,涌現出了大批新方法,研究熱點問題也從符號計算發展到智能計算和Agent等。其中,計算智能主要涉及神經計算、模糊計算、進化計算和人工生命等領域,在模式識別、圖像處理、自動控制、通信網絡等很多領域都得到了成功應用;Agent最早來自分布式人工智能,隨著并行計算和分布式處理等技術的發展而逐漸成為熱點。
在互聯網上有大量最新的與課程內容相關的研究論文,為學生提供了很好的查閱文獻的環境,使學生能夠根據所學習的內容和所在課題組的研究方向閱讀相應文獻,提高學生的學習興趣和獨立提出問題、解決問題的能力。
2.3應用性強
人工智能理論已經滲透到科學的各個領域,當前,幾乎所有的科學與技術分支都在共享著人工智能領域所提供的理論和技術。例如,自第一個專家系統DENDRAL研制成功以來,專家系統已成功地應用于數學、物理、化學、醫學、地質、氣象、農業、法律、教育、交通運輸、軍事、經濟等幾乎所有領域;數據挖掘技術是以一種更自動化的方式對具有大量數據的商業活動進行分析和預測,在市場營銷、銀行、制造業、保險業、計算機安全、醫藥、交通、電信等領域已有許多案例;語義Web讓Web上的信息能夠被機器所理解,實現Web信息的自動處理,成功地將人工智能的研究成果應用到互聯網。另外,在機器視覺、自然語言理解、智能控制與智能制造等方面,人工智能技術也得到廣泛的應用,有許多研究成果已經進入人們的生活。目前,從理論到技術,從產品到工程,從家庭到社會,智能無處不在,人工智能廣泛的應用性給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。
人工智能課程的多學科交叉性、內容廣泛性、概念抽象、不易理解以及前沿性和應用性特點決定了在該課程的講授過程中應該采用多種授課方法。多種授課方法的采用一方面便于授課內容的理解,另一方面也能夠更好地培養學生的創新思維和技術創新能力,提高他們的科技素質和學術水平。
3人工智能課程教學方法
3.1基于問題的啟發式教學法
蘇霍姆林斯基說:“喚起人實行自我教育,乃是一種真正的教育。”基于問題的啟發式教學法是教師在深入了解學生心理特點和學習規律的基礎上,設計適合教學的啟發式問題,并采取靈活多樣、生動活潑的啟發方式,充分調動學生的學習興趣,激發、引導學生進行科學思維,培養學生獨立思考問題、提出問題和解決問題的能力。該教學方法強調的是過程,教師的主要任務是提出問題,依據舉一反三的思路引導學生展開邏輯推理,通過逐層分析深入思考問題,最后綜合學生觀點闡述相關理論。
在課程教學中,有許多內容適合于采用啟發式教學方法。例如,在知識表示方法的學習過程中,教師首先提出問題:“你是怎樣進行數學定理證明的?”并在學生的回答過程中,引導學生認識到知識及其表示的重要性;隨后,提出問題:“在計算機中如何表示知識?”引導學生逐步總結出不同知識表示方法在知識表達能力、推理效率、可實現性、可組織性、可維護性方面的區別。另外,在確定性推理的教學過程中,教師可以利用“某處發生盜竊案,公安局派出5個偵查員去調查,研究案情時,5個偵查員各給出了一句可信的結論,據此判斷誰是盜竊犯”的問題[4],讓學生進行判斷和討論,引導學生認識到推理過程中可以使用多條規則進行推理,并且推理路線也可能存在多條,從而引出推理的兩大基本問題:解決沖突消解等問題的推理策略,以及解決推理線路等問題的搜索策略。
啟發式教學法的要點是設計適當的啟發式問題和啟發方式、安排能調動學生積極性的討論環境、鼓勵學生發表個性化觀點。教師不僅用問題引發學生思考,更要鼓勵學生讓思維自由馳騁,主動提出問題,討論問題,尋求問題解決方案。在探討、研究問題中,不要以現有的結論和固定的程式束縛思想,鼓勵學生的個性化觀點。啟發式教學是一種民主、科學的教學方法,其中包含諸多具體的教學方法,如激疑啟發法、比喻啟發法、類比啟發法、聯系啟發法,等等。啟發式教學在傳授知識的同時,更注重的是對創新的孕育、萌芽、生成和壯大,它能促使學生自己獲取知識、思考問題、提出問題、分析問題、解決問題,培養學生的自學能力。以問題為基礎的啟發式教學,利用問題引導學生學習,全方位深層次發展學生的創新思維和探究性學習能力。問題可以誘發出學生的求知欲,激發、喚醒了學生的主體意識;問題往往是面向生活世界的實踐活動的,它使教學活動從以傳授知識為中心轉化為傳授知識與培養能力并重,理論與實踐相結合,提高了學生分析、綜合、觀察、想象等思維能力。
3.2基于案例的探究式教學法
基于案例的探究式教學法要求教師能夠根據學生的認知水平和能力,創設引導學生進行探究活動的案例,以激發學生探究問題的興趣,促進學生質疑、探求的創造性學習動機,通過選擇與確定問題、討論與提出設想、實踐與尋求結果、驗證與得出結論,發展學生的創造性思維,培養學生獨立探究、研究能力和創新能力。探究式教學強調學生的積極參與,強調師生互動。對教師來說,必須轉變傳統的“傳道”觀念,以平等的心態與學生交流探討。在課堂上,要努力營造民主、寬松、和諧的教學氛圍,積極引導學生大膽設想,大膽探索。使學生樹立研究型學習的觀念,消除依附心理,養成勤于思考、善于思考的良好學習習慣,通過積極參與研討培養學生自己獲取新知、探求未知的能力,以及團隊意識和合作精神。
我們在本課程神經網絡部分的教學中,將基于BP神經網絡的維吾爾文手寫字母識別作為案例開展了探究式教學活動。在介紹了前饋多層感知器及標準BP算法之后,教師將科研項目中基于標準BP算法的維吾爾文手寫字母識別實驗及其結果詳細地在課堂上進行演示,引導學生對實驗提出質疑。在教學實踐中,學生提出了大量問題,例如,輸出層神經元個數如何確定,為什么輸出層神經元個數對識別率會有影響?網絡訓練過程中出現震蕩的原因是什么?如何解決?為什么有時誤差較大,權值的調整量反而很???等等。在教師事先準備好的實驗演示的基礎上,開展學生進行課堂討論,讓學生提出解決問題的各種方法,并現場通過實驗進行驗證,逐步讓學生理解BP網絡結構設計、輸入輸出數據的預處理、初始權值設計的必要性及其實現方法。課堂授課實踐表明,這種方法極大地激發了學生的學習興趣,使學生能夠大膽設想,大膽探索,增加了學生的自信心和創新精神。本次課堂討論結束后,教師根據學生的討論以及實驗結果演示,總結標準BP算法的局限性,例如,“易形成局部極小”,“訓練次數多,學習效率低”,“訓練時有學習新樣本遺忘舊樣本的趨勢”等,并要求學生通過查資料、搜集必要的信息、積極地思索和實驗驗證提出解決上述問題的方法,將學生分組,讓學生展開討論,為下次討論課作好準備。
傳統教學方法是告訴學生怎么去做,在一定程度上損害了學生的積極性。而案例教學要求學生自己去思考、去創造,使得枯燥乏味的內容變得生動活潑,并且案例教學中,通過學生之間的交流既可以使學生取長補短、促進人際交流能力,也可以引導學生變注重知識為注重能力。
案例教學法的關鍵是案例的選擇。案例是為教學目標服務的,因此它應該具有典型性,且應該與所對應的理論知識有直接的聯系。案例最好是經過深入調查研究。來源于實踐,不能只是一堆數據的羅列。教科書的編寫應采用圖片、表格、曲線等方式讓學生看到算法的實驗結果,啟發學生思考。另外,案例應該只有情況沒有結果,有激烈的矛盾沖突,沒有處理辦法和結論,由學生對案例提出質疑,從這個意義上講,案例的情況越復雜,越多樣性,越有價值。
案例教學法能夠實現教學相長。教學中,教師不僅是教師而且也是學員。一方面,教師是整個教學的主導者,掌握著教學進程,引導學生思考、組織討論研究,進行總結、歸納。另一方面,在教學中通過共同研討,教師不但可以發現自己的弱點,而且從學生那里可以了解到大量感性材料。另外,案例教學法能夠調動學生學習主動性。教學中,由于不斷變換教學形式,學生大腦興奮不斷轉移,注意力能夠得到及時調節,有利于學生精神始終維持最佳狀態。案例教學的最大特點是它的真實性。由于教學內容是具體的實例,加之采用是形象、直觀、生動的形式,給人以身臨其境之感,易于學習和理解。最后,案例教學法能夠集思廣益。教師在課堂上不是“獨唱”,而是和大家一起討論思考,學生在課堂上也不是忙于記筆記,而是共同探討問題。由于調動集體的智慧和力量,容易開闊思路,收到良好的效果。
3.3加強研討
鑒于研究生的培養目標和人工智能課程研究范疇的寬泛性、應用性、創新性和前沿性,根據我校計算機系碩士生指導教師的研究領域,我們在課堂教學中為計算智能、機器學習算法、機器視覺、自然語言理解部分增加了研討會,要求學生上網進行文獻檢索、閱讀和學術研討,根據個人的研究興趣和研究設想上臺作報告。另外,我們還邀請相應專家和成果突出的各屆研究生為學生做報告,介紹他們的研究實踐、研究成果和心得體會。例如,在自然語言理解部分的課堂教學中,在介紹完自然語言理解的基本概念與原理之后,我們要求將來做這個領域的研究生在通過查資料了解所在研究小組工作的基礎上,上臺作報告。機器翻譯研究組的同學在學習自然語言理解部分的內容之后,對其所在小組目前的工作及采用的技術、存在的問題做了分析,并通過閱讀文獻,提出了初步的解決問題的設想。與自己所在研究小組的科研相結合,開展文獻檢索和學術研討,一方面讓學生開闊了眼界,另一方面也提高了學生查閱文獻、主動獲取知識、獨立思考的科研能力。
4結語
人工智能理論已經滲透到科學的各個領域,人工智能技術也得到了廣泛的應用。人工智能課程具有多學科交叉、內容廣泛、前沿性和應用性強等特點,課程開設能夠很好地培養學生的創新思維和技術創新能力。教與學是教師與學生雙方互動的過程,教學中要根據學生身心特征的實際情況采用相應的教學方法,并結合本??蒲嘘犖榈难芯款I域,不斷地探索和提高,才能使教學工作更上一層樓,切實為國家、為社會培養具有創新能力、實踐能力和創業精神的高層次人才。
參考文獻:
[1] 陳白帆,蔡自興,劉麗玨. 人工智能精品課程的創新性教學探索[J]. 計算機教育,2010(19):27-31.
[2] 謝安邦. 構建合理的研究生教育課程體系[J]. 高等教育研究,2003,24(5):68-72.
[3] 教育部研究生工作辦公室,國務院學位委員會辦公室. 高層次人才培養的研究與探索[M]. 北京:高等教育出版社,2000.
[4] 蔡自興,徐光佑. 人工智能及其應用[M]. 4版. 北京:清華大學出版社,2010:113.
Exploration of Artificial Intelligence Course Teaching of Graduate Students
ZHAO Hui1, JIA Zhenhong1, WANG Weiqing2
(1.School of Information Engineering, Xinjiang University, Urumuchi 830046, China;
(1)為部分優秀的學生將來做更深入的研究打堅實的基礎。在面向知識經濟的今天,研究獲取、表示和使用知識的人工智能學科越來越受到人們的重視。目前人工智能研究被列為中國高技術領域的重點之一。以專家系統為代表的智能化系統在信息技術中也占有重要地位。因此在高等教育中開展人工智能教育和智能化系統的研發,不僅是計算機科學的應用,也是促進各學科服務于國民經濟發展的必然趨勢。為使人工智能的理論、方法和技術的研究與應用普及和深入,教育重心必須要下移,即從研究生教育向本科教育普及。開展本科層次人工智能普及教育的有效途徑之一是在本科高年級開設相關選修課。開展人工智能教育,不僅能夠更好地發揮高等院校的育人和科學研究功能,而且能為學生拓寬專業路徑,擴大自主學習空間和發展個性創造條件,同時也為營造一個使學生不僅有寬厚、扎實的理論基礎,且具綜合分析和解決問題能力的環境。?
(2)為將來從教的學生積聚大量的知識。英國早在1999年,人工智能課程已經作為選修課出現在中學的信息與通訊技術(ICT)課程中。許多中小學還通過機器人競賽活動來激發中小學生學習人工智能的興趣,使學生不僅提高了用信息技術解決問題的能力,而且培養了多種思維方式,獲得了更多的創新空間。美國現行的中學信息技術課程設置中,將人工智能的內容作為“媒體與技術”層面對12年級學生的要求。澳大利亞的部分中學開設的信息處理與技術課程,人工智能、信息系統、算法和程序設計、社會和倫理道德、計算機系統分別作為5個主題共同構成了該課程的教學內容。在該課程的大綱中規定,人工智能部分的教學內容在高中第3學期為12年級的學生開設,教學時間為10周。?
在我國,多年以來中學奧林匹克信息學競賽中一直包含有人工智能相關的題目,涉及啟發式搜索、博弈、智能程序設計等問題。2003年4月,我國教育部正式頒布《普通高中技術課程標準(實驗)》,首次在信息技術科目中設立了“人工智能初步”選修模塊,標志著我國高中人工智能課程的正式起步。?
我國的新課程標準頒布后,教育部評審并通過了分別由教育科學出版社、廣東高教出版社、地圖出版社、上??萍冀逃霭嫔绾驼憬逃霭嫔绯霭娴?套高中《人工智能初步》教材,并開發了相應的教輔材料,包括教師用書和配套光盤等。為了配合中學人工智能課程的實施,國內也推出了一些適合中學生學習與體驗的人工智能軟件和網絡資源。另一方面,一些高校的本科生、研究生也逐步關注中學人工智能教育的開展并將其作為畢業論文的研究選題。一些師范院校適應形勢要求,已為師范生開設了與此相關的選修課程。?
2 人工智能的教育及教學條件現狀?
通過對本人多年的教學過程進行總結,我校的《人工智能》課程教育現狀可總結為如下幾點:?
(1)理論知識充裕。但與實踐相脫節,特別是在智能科學技術的教育教學方面。盡管知識面相當廣泛,而人工智能理論的普及教育以及智能技術的開發與應用仍然十分滯后。?
(2)同其它普通高等院校一樣,在本校,人工智能技術的研究與應用尚未普及,甚至比不上其它院校。這不利于培養學生的科研興趣及創造精神。?
(3)缺乏配套實驗教材,實驗教學內容缺乏,無法培養學生的研究能力和創新能力。只有開設實驗項目,才能使人工智能的相關知識具有研究性和綜合性。?
(4)對中小學智能教育的深度及教學方式、教學特點缺乏研究。做為師范類院校,我認為在對學生進行基礎知識教育的基礎上,要緊抓中小學智能教育的特點對師范類學生進行相關的教育與培訓。?
相對于教育現狀,我校的《人工智能》課程教學條件現狀要稍好一些,其狀態如下:?
(1)教材使用國家級規劃教材,此教材非常系統地介紹了人工智能的基本原理、方法和應用技術,適合本科及研究生使用。在我們的授課過程中,也會適當為學生提供相關的國內其他先進教材,如中南大學蔡自興教授的《人工智能及其應用》等。?
(2)為了促進學生自主學習,我們準備了多種類型的擴充性學習資料,加強學生主動學習的意識,包括:課程相關雜志和書籍目錄,以及部分重要的參考文獻,與人工智能相關的網絡資源如優秀BBS、新聞組、網址等。 它們包括了大量的文獻資料、本領域研究的前沿動態等。 使用表明,學生非常樂于查閱這些資源。 使學生能通過使用這些資源進行一些人工智能程序設計,探討一些問題,在課堂討論中展示他們的收獲。?
(3)校園網的普及與不斷優化使本課程有優良的實踐性教學環境,能充分滿足教學需要。我們擁有較充足的多媒體教室和網絡教室,為實現本課程教學提供了物質保障。在網絡資源建設方面,全校辦公室、教室、學生宿舍和教師宿舍都以寬帶網相連,這些硬件設備對本課程教學發揮了重要作用,使本課程教學質量得以明顯提高。?
3 人工智能教學方法及手段的改革?
針對我們現在所采取的教學方法,我認為存在許多不足,如教學方式比較單一,教學內容偏重理論講解等,為此,提出以下教學方法的改革:?
(1)通過多種途徑激發學生的學習興趣。課程的學習效果,直接受到學生興趣和參與意識的影響。一般來講,《人工智能》作為一門前沿課程,開始學生學習興趣很大,當開始接觸到抽象理論知識及部分算法時,學生往往感到不易接受。 我們通過各種途徑和方法, 激發和培養學生的學習興趣,包括鼓勵學生參與某部分知識的擴充性資料查找,預留一定時間請學生負責對此內容進行講解,布置學生對某個基本成型的實驗進行糾錯及驗證,降低問題解決的難度。學生因此產生興趣從而做更深度研究。?
(2)進行啟發式教學。 我們可以嘗試在教學過程中不斷提出問題請學生思考,啟發學生求解這些問題,鼓勵學生提出自己的猜想和解決方案,然后擺出教材中的解決方案,并與同學所提出的觀點進行分析和比較,這足以加強學生學習的主動意識和參與意識,提高學生學習的積極性。?
(3)課堂辯論與交互式教學。 組織課堂辯論,討論的議題可定位為譬如人工智能是否能超過人類智能等有爭議的問題。學生通過對這些問題展開激烈爭論,激發了學習潛能,明確了學習目標。當然師生間的交流方式還有很多,如郵件互發、QQ留言等,也可在課程網站中的互動平臺進行交流。?
(4)分層次因材施教。 在授課過程中,通過對每個具體學生的學習進度、課堂作業情況進行及時評估,對學生提出進一步的學習建議和指導, 實現個性化的教學。 對優秀學生探討,可以在教學設計和實驗設計中要求其選作部分探索性、創新性的功課和實驗,以發揮學生個性優勢。對于有意于將來從事中小學教育的學生可以在機器人及人工智能技術發展現狀等知識層面對其做問題講解。而那些看似缺乏興趣的學生,我們可以用多媒體手段如播放人工智能相關電影及科學小片引起其興趣,實行逐步引導的教學過程。?
另外,我們可以嘗試雙語教學。 采用中文教材和講授的同時,注重在課程中的關鍵詞同時用英文表示,并適當指定英文參考短文和英文參考書。使學生能夠接觸國外文獻資料,加深對學習內容的理解,獲得更寬廣的知識。我們也可以在教學內容安排上,注重理論聯系實際,將一些人工智能網絡上的虛擬實驗給學生進行課外上網練習,從而使學生了解算法的具體運行過程, 通過參與達到知識的理解,掌握基本方法和技術。?
根據現有的條件,我們在教學中可以采用多媒體教學和網絡課程教學相結合的方法,充分利用多媒體的豐富表現形式,利用網絡課程的交互性、情景化等特點,構筑以學生為主體的《人工智能》課程現代教學模式。 對于抽象知識,可通過動畫和視頻演示,通過聲音和圖像展示人工智能的歷史、人物和前景,做到學生直接而深刻地看到知識的內涵外延。網絡課程能較好地實現交互并使學習過程情景化,通過網絡課程的課堂練習和章節練習,教師可以評價學生的學習情況,并給學生提出學習建議,從而提高學生的研究力和創新力。我們也可以給學生播放中學《人工智能》課程課堂教學錄像,以使學生看到初高中學生的知識范圍及深度;同時給學生播放現有的《人工智能》科學成果,讓學生看到理論背后的實踐;也可以播放科幻片,激發學生想象的翅膀從而有興趣把人工智能作為將來深造的方向。《人工智能》是一門較新的課程,改進教學方法和手段不僅要靠教師,也應增加硬件設備的投入。如果人工智能能采用智能輔助教學系統或機器人輔助教學過程逼真、形象,一目了然,這樣可大大提高學生的學習效率,尤其是提高學生的觀察判斷能力、發現問題和解決問題的能力。?
4 人工智能實踐教學設計的探討?
我們可以在教學過程中,適量開設一些實驗和設計,提高學生的動手能力,并加深他們對理論知識的理解,降低理論的抽象度,提升理論的實用性。在近兩年的教學過程中,我們會適量加入一些人工智能語言的教學過程。例如,在講解了“野人與傳教士過河”等問題后,我們可以讓學生使用Visual Prolog或者C ?++?對算法進行實現;在講解 TSP 問題的遺傳算法解決案例后,指出編碼方案、初始種群大小、進化代數、交叉率變異率等因素對求解結果的影響,并要求學生通過實驗的方式來分析、理解這些問題,并提出“尋找更有利的解決方案”等問題。把學生的興趣激發后,為解決這些問題,學生會在課外主動查閱相關文獻、相互討論以實現他們所設計的方案,這樣既培養了學生善于鉆研和勇于創新的精神又提高了學生的實踐與創新能力。?
參考文獻:?
[1] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學的探討[J].宿州學院學報,2008(1).?
人工智能是計算機科學的一個分支,是一門研究運用計算機模擬和延伸人腦功能的綜合性學科,對它的研究涉及控制論、信息論、系統論、語言學、神經生理學、數學、哲學等諸多的學科及領域,是一門綜合性的交叉學科[1]。
人工智能的研究、應用和發展,在一定程度上代表著信息技術的發展方向,同時信息技術的廣泛應用也對人工智能技術的發展提出了迫切的需求。今天,人工智能的不少研究領域如自然語言理解、模式識別、機器學習、數據挖掘、智能檢索、機器人技術、人工神經網絡等都走在了信息技術的前沿,有許多研究成果已經進入人們的生活、學習和工作中,并對人類的發展產生了重要影響[2]。
實踐教學環節在大學教育中是一個非常重要的教學環節,是提高人才素質與能力的重要途徑。人工智能課程除了具有較強的專業性之外,還具有突出的實踐性,為了能深入理解和掌握所學內容,必須把講授和實踐結合起來。本文結合該課程實驗教學,將研究型教學的理念引入到實驗教學,并對教學過程中的經驗和問題加以初步的總結。
1研究型教學模式背景
研究型教學是相對于以單向性知識傳授為主的傳統教學提出的,是指教師以課程內容和學生的學識積累為基礎,引導學生創造性地運用知識和能力,自主地發現問題、研究問題和解決問題,在研究中積累知識、培養能力和鍛煉思維的新型教學模式。研究性教學是對現有的大學課堂教學模式的突破。有利于開發大學生的創造潛能,提高學生適應社會需要的創造性和創新能力,充分展現現代大學培養人才、發展科學、服務社會的三大基本職能[3]。
19世紀初,德國著名教育家洪堡最早提出了教學與科研相統一的原則,為研究型教學模式的發展奠定了基礎。20世紀50、60年代,美國著名教育心理學家布魯納提出了著名的“發現教學模式”[4],成為后來探究性學習和研究型教學的先導。20世紀70年代,美國研究教學專家薩奇曼正式提出了研究訓練教學模式。他認為學生會本能地對周圍新奇事物發生興趣,并想方設法弄清這些新奇事物背后究竟發生了什么,這是一種進行科學研究的可貴的動力。
自此,研究型教學理念開始廣泛使用?,F在,哈佛大學、牛津大學、劍橋大學等世界著名大學,都非常注重學生能力的培養,普遍采取了研究型教學模式。以美國高校為例,雖然美國高校83%的教師在課堂教學中主要采用講授法進行教學,但在整個教學過程中都滲透著研究型教學的方法,如積極引導學生參與教學過程,開設研究性課程,引導學生積極主動地參與科研活動等。我國自20世紀90年代初推出211工程建設以來,清華大學、北京大學、人民大學、復旦大學、浙江大學等一些重點大學都提出了建設世界一流的綜合性研究型大學的目標。這些高校在實現從單向知識傳授的傳統型教學向關注創新性教育的研究型教學轉變方面進行了許多有益的嘗試。
2研究型實驗教學
本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。大學是培養未來一線創新人才的主要基地,必須從本科教學人手,深入探索研究型教學的手段和方法,才能滿足未來經濟增長和社會發展的需要,才能符合建設研究型大學的需要。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非?;钴S的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。
人工智能課程在計算機專業人才培養方案中占據著重要的位置。在專業理論方面,它承續了離散數學中的邏輯知識;在專業方法方面,是數據結構、算法分析與設計的繼續;在專業工具方面,是面向對象程序設計的生動實例。并且人工智能的每一部分內容都可以作為一個深入的研究課題,課堂上講解的內容不可能面面俱到,學生們也不可能對人工智能的每一領域都做很深入的學習。并且人工智能涉及很多的數理邏輯知識,有些顯得難以理解,并且往往讓學生感到比較枯燥,學生的學習興趣就漸漸淡薄,學生往往被動“聽講”,難以獲得預期的教學效果。
針對這一特點,在人工智能教學中,如何引導學生系統學習人工智能的知識、激發學生的研究興趣,樹立目標意識找準研究方向,為未來的科研工作打下基礎,研究型實驗教學就成為了人工智能課程教學的一個重要環節和必然選擇。
2.1實驗教學中加強學生的研究導向
在實驗教學中,如果照搬一些教材中的例子或習題教學,一方面學生們會缺乏興趣,另一方面學生對這個領域的知識缺乏全面的了解。應不斷提出一些學生們感興趣的開放性課題,比如基于支持向量機的人臉識別、基于膚色的人臉檢測,基于內容的圖像檢索等,培養學生們的學習興趣,讓學生們逐漸深入的學習某一領域的知識。比如BP神經網絡,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用,是一種具有強大的非線性學習能力的計算智能技術。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等,而支持向量機在這些方面具有顯著優點。我們可以設計一個人臉識別的實驗,用神經網絡和支持向量機分別實現,并作以比較。讓學生們在了解人工智能新技術的同時,也培養學生們如何分析問題、解決問題的科研能力。
2.2人工智能課程實驗
該課程是一門對實驗技術有較高要求的課程,對于基本原理和方法的實現,要求學生進行嚴格的計算機專業技能訓練和培養良好的科研工作作風。因此對課程中的技能及技術性內容,除單獨進行必要的基礎訓練外,還融入到綜合和研究型試驗中,通過多次反復實驗練習,達到牢固掌握人工智能原理和人工智能的問題求解技術的目的。
該課程的實踐環節主要是實踐項目,由具備較強工程實踐能力的任課教師和助教負責,學生可在全天候開放的專用機房完成。在實踐環節的設計上,我們嘗試把驗證性實驗和開發性實驗相結合,結合實驗教學進度,安排相應的開放實驗,開放性實驗以科學研究實驗為主。并在課程的教學過程中,不斷深化和擴展教學內容,結合人工智能學科的發展趨勢和本院老師的最新研究成果,對實驗內容進行更新。
課程主要設置三種層次的實驗:1)基本原理和算法編程,測試例設計及程序測試實驗;2)分析綜合實驗;3)研究型設計實驗。整個實驗包括課前討論、實驗操作、實驗報告、結果討論、總結提高等六個環節。對于綜合性和研究型實驗,把學生分成5個人一小組,每小組選做其中的一個。學生從指導老師處了解到實驗課題后,即著手查資料,研讀文獻,鉆研有關理論。在此基礎上,學生先提出實驗方案,經與老師討論后,即可開始實驗研究。
3實驗平臺的構建
民族關系問題對被訪對象,特別對少數民族被訪對象是非常敏感的問題,對民族關系的評價又存在個體層面、群體層面、不同階層人群之間的差異,因此,僅僅以傳統的文獻分析、問卷統計和現場觀察等民族學方法來進行調查,得到的數據會存在較多誤差。
因此結合本校的民族特色和民族學領域獨特的研究優勢,將信息認知技術引入民族關系研究,運用圖像、心電和腦電數據進行分析,將分析的結果和心理場景測試及民族學調查結果進行相互印證和參數修正,從而獲得盡可能客觀的數據,這些數據將有助于建立一個客觀、完備、科學的民族關系監測體系,并真實全面地評估民族關系,從而使決策機構及時做出正確的決策。基于多信息融合的民族關系監測預警系統總體框圖如圖1所示。
目前該平臺已經搭建,由北京市公共安全信息監測平臺建設、北京市公共安全信息監測平臺建設關鍵技術研究、基于多源信息融合的民族信任研究等多個重大項目支撐。在這個平臺的下面,涉及到人臉識別、表情識別,視頻監控、認識等領域,小波分析、神經網絡、支持向量機、模糊數學、信息融合等人工智能知識得到了具體的應用。學生可以根據自己的興趣愛好,自愿參加到該平臺下的某一項目,切實對自己所學知識有一個深刻的理解和掌握。
4結語
研究型實驗教學激發了學生的學習興趣,不但使學生更好地掌握了人工智能的基本概念、基本理論和基本技術,也切實提高了學生的實際動手能力和編程能力。研究型實驗教學在實踐過程中還有以下問題需要改進:
1) 研究型實驗教學的理念很難普及。很多教師對研究型教學模式的內涵未能準確把握,把研究型教學模式等同于學生實習或者寫論文。
2) 研究型實驗教學的輔導老師素養需要提高。研究型實驗教學作為體現創新教育要求的現代教學模式,需要的不是知識傳授型的教師,而是高素質的研究型教師。教師不僅是單一的教者,更應該成為一個學者,教師不僅要有研究型教學的教育觀念、快速接受新知識的能力和高超的教學技能,要能夠合理地規劃和設計實驗內容。
3) 需要建立一套合理的學生學業和教師績效的評價體系。
參考文獻:
[1] 王萬森. 人工智能原理及其應用[M]. 北京:電子工業出版社,2007.
[2] 蔡自興,徐光佑. 人工智能及其應用[M]. 北京:清華大學出版社,2004.
[3] 李得偉,張超,李海鷹. 大學工科專業課程實施研究型教學的探討[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大學研究性教學的理念探析[J].教育導刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng