時間:2023-08-01 17:19:41
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇歐姆定律的實質范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
(2)牛頓第二定律。在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應請注意:公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。
(3)萬有引力定律。教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力恒量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。
(4)機械能守恒定律。這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不做功或所做的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。
(5)動量守恒定律。歷史上,牛頓第二定律是以F=dP/dt的形式提出來的。所以有人認為動量守恒定律不能從牛頓運動定律推導出來,主張從實驗直接總結。但是實驗要用到氣墊導軌和閃光照相,就目前中學的實驗條件來說,多數難以做到。即使做得到,要在課堂里準確完成實驗并總結出規律也非易事。故一般教材還是從牛頓運動定律導出,再安排一節“動量和牛頓運動定律”。這樣既符合教學規律,也不違反科學規律。
在物理復習的整個知識體系中,電學知識板塊兒尤為重要。一是:它占整個三式合一理化試題物理部分的40%左右,即70分中的近30分屬于物理電學試題。二是:電學知識在生產實踐中的重要作用已凸顯出來。而要學生全面掌握、領會初中階段電學知識,對于相當一部分初中生來說具有較大的難度。從教以來我聽過一些初中電學復習課:有的先把所要用到的電學公式板書在黑板上,再講典型例題,接著練習;有的則通過學生作題中所反饋的問題對知識進行補充強調,再練習;有的直接強調萬變不離其宗,讓學生多看教材,然后講例題等。復習中講例題沒錯,但選擇的例題過多,又無代表性,既延長了復習時間,又不能使學生的知識得到升華。久而久之,學生疲勞,老師厭煩。要使復習課在短時間內生動、奏效,應選擇恰當的例題,在講例題的基礎上,對知識進行歸納和升華。
復習課,一要體現“從生活走向物理,從物理走向社會”,教學方式多樣化等新課程理念;二要體現“知識與技能、過程與方法以及情感態度和價值觀”三維目標的培養;三要優化學生的認知結構,讓學生在教師的引導、幫助下,把學到的知識歸納起來,從而便于提練和記憶。所以對電學的復習要從學生喜聞樂見的小電器起步,從典型例題入手進行歸納總結。
例1:如圖-1是一個玩具汽車上的控制電路。小明對其進行測量和研究發現:電動機的線圈電阻為1Ω,保護電阻R為4Ω。當閉合S后,兩電壓表的示數分別為6V和2V,則電路中的電流為?搖 ?搖?搖?搖A,電動機的功率為?搖?搖 ?搖?搖W。(這是陜西師范大學出版社出版,經陜西省中小學教材審定委員會2008年審定通過的《物理課堂練習冊》中的一道題)
學生通常按下列方法計算電路中的電流:
R中的電流:I=U/R=2V/4Ω=0.5A,
電動機中的電流:I=U/R=4V/1Ω=4A,
由此得第一空電路中的電流就有兩個值0.5A和4A。
于是第二空的對應值為:P=UI=4V×0.5A=2W與P=UI=4V×4A=16W。這就存在兩個問題:
1.根據歐姆定律計算出兩個串聯元件中的電流不相等,與串聯電路中電流的特點相矛盾。
2.由串聯分壓原理得:U:U=R∶R=1∶4,得:
①當U=2V時,U=8V,得到U+U=2V+8V=10V≠U源;
②當UM′=4V時,U′=1V。U′+U=1V+4V=5V≠U,這與串聯電路中的電壓關系相矛盾。
對此,應找出題中所涉及的知識點,分析這些知識點間的聯系,那上面的矛盾就迎刃而解了。
首先,應對歐姆定律有深入的理解。
例2:如圖2所示電路(R≠R≠R)。引導學生分析如下:
1.對電路狀態的分析。
(1)當S、S、S都閉合時,R與R并聯,并聯后作為一個整體再與R串聯。A測R中的電流,V測R或R兩端電壓。
(2)當S、S閉合S斷開時,則由圖-2演變為圖-2(a)到(b)。
R與R串聯,R處于斷開狀態,A測整個電路中的電流。
(3)當S、S閉合S斷開時,則由圖2演變為圖-2(c)到(d)。
R與R串聯,R處于斷開狀態,V測R兩端電壓。
2.歐姆定律中涉及I、U、R三個量間的關系。
(1)歐姆定律中的I、U、R三個量是針對同一個用電器或者同一部分電路而言的,即必須滿足“同一性”。
當圖-2中的S、S、S都閉合時,A測R中的電流為I,V測R兩端電壓為U。此時能否用U與I的比值來計算R或R阻值呢?(即R=U/I)。
如果R=R時,由于R與R并聯,所以R兩端電壓U等于R兩端電壓U,即U=U=U。根據R=U/I得R=U/I,R=U/I。這樣計算出的R2的值雖然是正確的,但屬于不正確的方法得出了正確的結果,實屬偶然巧合。
若R≠R時,那么R=U/I,若再按R=U/I來計算R的電阻值就沒有上述的巧合了。因為電壓相等是并聯電路電壓的特點,R、R中的電流是不相等的。上述中錯誤地認為R、R中電流相等。這里的電壓是R兩端電壓,而電流是R中的電流,電壓與電流是兩個不同電阻(或用電器,或電路)的對應量,也就違背了“同一性”。
這就告訴我們,在應用歐姆定律解題時,一定要遵循“同一性”原則,切忌“張冠李戴”,電學中的所有公式都不能違背“同一性”原則。如:W=UIt、Q=IRt、P=UI等。
(2)歐姆定律中的I、U、R三個量必須是同一狀態、同一時刻存在的三個物理量,即必須滿足“同時性”。
在圖-2中,當S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小是否相等?
在圖-2中,當S、S閉合S斷開時,不難看出,R與R串聯:I=I=I則I=U源/(R+R);當S、S閉合S斷開時,R與R串聯:I=I=I,則I=U/(R+R)。因為R+R≠R+R所以U源/(R+R)≠U源/(R+R),即兩次電流不相等。S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小不相等,這是因為S、S閉合時與S、S閉合時電路狀態不同,R是在不同的狀態下工作,不是同一時間內電流的大小,電流不相等。
在利用公式計算的過程中,不能用第一狀態下的量值與第二狀態下的量值代入關系式計算。如:要計算R的電阻值,就不能用第一狀態下R兩端的電壓值與第二狀態下R中的電流的比值來計算R的電阻值。在計算電流、電壓時,也不能這樣處理。
因此在利用公式計算時,帶值入式的物理量必須是同一狀態下的物理量,必須滿足“同時性”。
(3)歐姆定律中的I、U、R三個量的單位必須同一到國際單位制,即I―A、U―V、R―Ω。即應滿足“統一性”。
除各物理量的主單位外,還應記住常用單位及其單位換算關系,將常用單位換算為國際單位制單位,在利用其它電學公式計算時也要統一單位。
如:電功的公式W=UIt中,各物理量的對應單位:U-V、I-A、t-S;這樣W的單位才是J。電熱的公式Q=IRt中:I―A、R―Ω、t―S;這樣Q的單位才是J。電功率的公式P=UI中:U-V、I-A,這樣P的單位才是W。
我們要確定歐姆定律的適用條件。
1.歐姆定律只對一段不含電源的導體成立,即只適用于純電阻電路。因此,歐姆定律又稱為一段不含源電路的歐姆定律。
例1中涉及到電磁轉換的知識,電動機工作時實質上也是一個發電機。電動機工作時,其閉合線圈切割磁感線會產生感應電流,所產生的感應電流對流過電動機線圈中的電流有一定影響。
實際上圖1相當于一個“RL”串聯電路,總電壓的有效值不等于各分電壓有效值的代數和,即U≠U+U。但得到的電流有效值的關系I=U/Z與直流(或部分)電路的歐姆定律相似,各元件上的分電壓與該元件的阻抗(Z)成正比。
雖然電動機工作時產生的阻抗目前初中階段無法計算出來,但無論電動機工作時產生的阻抗為多少,電路中的電流都等于電阻R中的電流,即I=U/R=2V/4Ω=0.5A。電動機兩端的實加電壓等于總電壓(電源電壓)減去電阻R兩端的電壓,即U=U-U=6V-2V=4V。則電動機的功率為:P=UI=4V×0.5A=2W。
本文為全文原貌 未安裝PDF瀏覽器用戶請先下載安裝 原版全文
上述分析說明,電阻R所在的這部分電路與電動機所在的這部分電路有著本質的不同。從能量轉化的角度看:電阻R所在的這部分電路是將電能全部轉化為熱能;而電動機所在的這部分電路電能只有少部分轉化為熱能,大部分轉化為機械能。前者屬于純電阻電路,后者屬于非純電阻電路。
歐姆定律只適用于純電阻電路,即用電器工作的時候電能全部轉化為內能的電路。例如電熨斗、電暖氣、電熱毯、電飯鍋、熱得快等。而電動機、電風扇,等等,除了發熱外,還對外做功,所以這些是非純電阻電路,歐姆定律不再適用。由歐姆定律導出的公式也只適用于純電阻電路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)
2.歐姆定律適用于金屬導體和通常狀態下的電解質溶液;但是對于氣態導體(如日光燈管中的汞蒸氣)和其它一些導電元器件,歐姆定律不成立。歐姆定律對某一導體是否適用,關鍵是看該導體的電阻是否為常數。當導體的電阻是不隨電壓、電流變化的常數時,其電阻叫線性電阻或歐姆電阻,歐姆定律對它成立;當導體的電阻隨電壓、電流變化時,其電阻叫非線性電阻,如:電子管、晶體管、熱敏電阻等,歐姆定律對它不成立。
3.歐姆定律只有在等溫條件下,即導體溫度保持恒定時才能成立。當導體溫度變化時,歐姆定律對該導體不成立,因為電阻是溫度的函數。
在講解歐姆定律的應用時,常舉白熾燈的例子,實際上白熾燈的鎢絲在溫度變化很大時電阻具有非線性,隨著電流的增大,鎢絲的溫度升高很多,其電阻也隨著變化。對非線性電阻,歐姆定律不成立,但是作為電阻定義的關系式R=U/I仍然成立,只不過對非線性電阻,R不再是常量。
綜上所述,例1中第一空電路中的電流有兩個值0.5A和4A,一個是在純電阻電路(電阻R)中用歐姆定律算出的電流0.5A。另一個是用歐姆定律計算在非純電阻電路(含電動機的電路)中的電流為4A,顯然不對。
通過對例1的全面、透徹的分析,我們對電學知識得到了進一步升華:(1)判斷電路的連接方式;(2)判斷電表的作用;(3)利用歐姆定律解決實際問題時必須注意“三性”;(4)復習了電功率、焦耳定律等相關電學公式;(5)歐姆定律的適用范圍。
學生能夠領悟到,復習不是為了解題,而是要掌握知識的前后聯系,優化知識結構;仔細觀察,認真分析;發散思維,以點帶面;舉一反三,融會貫通。這樣,從而體現出知識與技能、過程與方法,以及情感態度和價值觀的培養。
參考文獻:
[1]王較過.物理教學論.陜西師范大學出版社,2003.
[2]閻金鐸,田世坤.初中物理教學通論.高等教育出版社,1989.
[3]梁紹榮等.普通物理學―電磁學高等教育出版社,1988.
新課程下的中考的另一個特點,就是重視對實驗探究能力的考查,促使同學們用新視角重新思考實驗的過程,得到新的發現或收獲,設計有關“過程與方法”的試題,考查同學們提出問題、做出猜想和假設、設計研究計劃、分析處理數據、得出結論、學會評價的能力。
二、試題講析
例1 如圖l所示,電阻R1為12Ω,將它與R2串聯后接到8V的電源上,已知R2兩端的電壓是2V,請求出電路的總電阻。
講析 這是一道應用歐姆定律的基礎題,解題的方法有兩種:一種是從歐姆定律出發的分析法;一種是從電路的基本性質出發的綜合法。即:求總電阻可以將R2的值求出來再求R1和R2的和;也可以用總電壓除以總電流得總電阻;或根據電路的性質建立相應的關系式求解。
解法一:因為R1、R2串聯,U1=U-U2=8V-2V=6V,I1=U1/R1=6V/12Ω=0.5A,I2=I1=0.5A,R2=U2/I2=2V/0.5A=4Ω,R總=R1+R2=12Ω+4Ω=16Ω.
解法二:因為R1、R2串聯,I=I1=I2,則U/R1+R2=U-U2/R1,8V/R=8V-2V/12Ω,R總=16Ω.
解法三:因為R1、R2串聯I1=I2,則U1/R1=U2/R2變形得R1/R2=U1/U2,R/R1+R2=U-U2/U1+U2,U/R1+R2=U-U2/R1,R總=16Ω.
例2 如圖2所示,電源電壓不變,當開關S閉合時,電表示數的變化情況是( ).
A.電流表、電壓表示數均變大
B.電流表、電壓表示數均變小
C.電壓表示數變大,電流表示數變小
D.電壓表示數變小,電流表示數變大
講析 這是一道歐姆定律應用題,要判斷電表的示數如何變化,關鍵是要知道電路中的電表示數變化的實質,當開關s閉合后,電路的狀態由兩個電阻的串聯變為只有一個電阻R2的電路;原來電流表測的是R1和R2串聯時的電流,現在R1和電流表被短路,電流表的示數為0,示數變小;電壓表原來測的是R2上的電壓,它是電源的一部分電壓,而現在的電路中只有R2,則U2=U源,示數變大,本題選C.
本題的問題是有些同學看不懂電路狀態變化的實質,死摳歐姆定律,電流或電壓的變化是與電路的變化有關,但知道了現在的電路的變化特征就簡單多了,識別電路是我們解電學題的前提,如果電路的狀態不清,則應用的電路性質也就會出錯,這種能力要加強。
例3 在如圖3所示的電路中,電源電壓U=4.5V,且保持不變,電阻R1=4Ω,變阻器R2的最大阻值為15Ω,電流袁的量程為0~0.6A,電壓表的量程為0~3V,為了保護電表,變阻器接入電路的阻值范圍不能超出( ).
A.3.5Ω~8Ω
B.2Ω~3.5Ω
C.0~8Ω D.0~3.5Ω
講析 本題是歐姆定律的又一種應用形式,是狀態電路中的變阻器的取值范圍問題,解這類題目的關鍵是從電路的狀態出發,找出符合電路要求的電學關系式,題目中的兩個電表同時要滿足不超過量程的要求,即:串聯電路中的電流不大于0.6A,電阻R2兩端的電壓不少于3V,所以我們可以用歐姆定律,寫出符合電路要求的數學不等式組然后求解。
依題意,由歐姆定律可得
由①②兩式解得3.5Ω≤R2≤8Ω,所以應選A.
本題與物理上其他題目一樣,關鍵是理清電路的特征,能寫出符合電路特點和要求的數學關系式,然后通過數學的手段解出結果,所以僅有基本知識是不夠的,更要練就解相關問題的技能。
例4 小明利用如圖4所示的裝置探究電流產生的熱量與哪些因素有關?在兩個相同的燒瓶中裝滿煤油,瓶中各放置一根電阻絲,且R甲大于R乙,通電一段時間后,甲瓶玻璃管中的煤油上升得比乙高,該現象能夠說明電流產生的熱量與下列哪個因素有關( )。
A.電荷量 B.電流 C.電阻 D.通電時間
講析 題目的表象是:甲瓶玻璃管中的煤油上升得比乙高,這與哪些因素有關?煤油是因為受熱膨脹,液面上升的;相同條件下,甲中的液面升得高,說明甲瓶中的電阻產生的熱量多R甲和R乙是串聯在電路中的,則電流、通電時間以及電荷量(電流和通電時間的乘積)相等,A、B、D選項都不是影響因素;根據焦耳定律甲的電阻大,甲放出的熱量多,則電流產生的熱量與電阻的大小有關,應選C.
本題實際上探究的是焦耳定律的影響因素,使同學們能進一步了解其內容、理解它的應用同時本題中也滲透了“控制變量法”的探究思想。
例5 一個電熱水壺,銘牌部分參數如下:額定電壓220V,額定功率模糊不清,熱效率為90%,正常工作情況下燒開滿壺水需要5min,水吸收的熱量為118800J,此時熱水壺消耗的電能為_______J,其額定功率為_______W,電阻是_________Ω.若實際電壓為198V,通過電熱水壺的電流是_________A,1min內
電熱水壺產生的熱量是________J.(假設電阻不隨溫度改變)
講析水所吸收的熱量已知,電熱的利用率知道,則消耗電能可以由熱量的利用率求出;用電時間已知,消耗的電能已求,則由電功率的定義求電功率,電水壺的電阻由R2=U2額/P額求出,在實際電壓下的電流I=U/R,實際電壓下的電熱水壺所產生的熱量Q=IRt.
答案:132000 440 110 1.8 21384
本題是歐姆定律和焦耳定律應用的基礎題,也是通過練習使同學們掌握基本知識的重要途徑,簡單的是這樣的填空題,復雜的可以演變成綜合應用題;這些題目也是中考中同學們易失分的地方。
例6 CFXB型“220V 1100W”電飯煲的原理圖如圖5所示,它有高溫燒煮和燜飯、保溫兩擋,通過單刀雙擲開關S進行調節,R0為電熱絲,當開關S接高溫燒煮擋時,電路的功率為1100W,當開關S接燜飯、保溫擋時,電路的總功率為22W。
(1)電飯煲在高溫燒煮檔時,開關S應與哪個觸點連接?
(2)電熱絲R0的阻值多大?
(3)當電飯煲在正常燜飯、保溫時電路中的電流多大?燜飯、保溫10rain,電熱絲R0產生的熱量為多少?
講析 電飯煲在高溫燒煮擋時,電路中的功率是最大,在電壓一定時,要得到最大功率電路中的電阻應最小,由圖5可知,當R被短路時,電路中的電阻最小,電路中只有R0工作,則S應合到2位置,高溫擋時的功率已知,電壓為額定電壓,R0由R=U2/P等求得,當電飯煲在正常燜飯、保溫時,電飯煲的熱功率最小,電路中的電阻最大,則R0和R串聯,可求出此時的電流,再由Q=I2Rt求出R0產生的熱量,
答:(1)與觸點2連接。
(2)P=U2/R0,R0=U2/P=(220V)2/1100W=44Ω.
(3)P=IU,I=P/U=22W/22V=O.1A,Q0=I2R0t=(0.1A)2×44Ω×600s=264J.
本題是歐姆定律和焦耳定律應用的綜合題,同學們要能綜合考慮影響電路發熱的因素,也就是理解焦耳定律定義公式(Q=I2Rt)和各種變形公式(Q=U2/R(t)、Q=UIt)的應用,其中也涉及到歐姆定律的靈活應用。
三、鞏固練習
1.如圖6所示電路中,R1=10Ω.當開關S閉合時,電流表示數為0.2A,電壓表示數為4V.求:(1)電源電壓;(2)R2的阻值。
2.如圖7所示電路中,電源電壓恒定,R1為定值電阻,R2為滑動變阻器,閉合開關S后,滑動變阻器滑片P自b向a移動的過程中(
)。
A.電流表A的示數變大,電壓表V2的示數與電流表A的示數之比變小
B.電流表A的示數變大,電壓表V2的示數與電流表A的示數之比變大
c.電壓表V1的示數不變,電路消耗的總功率變大
D.電壓表V2的示數變小,電路消耗的總功率變小
3.一只電爐的電阻為48.4Ω,接在電壓為220V的電路中工作,它的功率是w,電爐絲工作時熱得發紅,而連接電爐絲的導線卻不怎么發熱,其原因是
4.在一次科技小組的活動中,同學們按照如圖8所示的電路在AB之間接入一根細銅絲,閉合開關S后,調節滑動變阻器,使電流表的讀數保持3A不變,過了一會兒,細銅絲熔斷,在AB之間換接一根同長度的較粗的銅絲,再調節滑動變阻器到某一固定值,經較長時間粗銅絲沒有熔斷,在此過程中,電流表的讀數保持3A不變小明同學針對所觀察到的現象提出了一個問題:造成細銅絲熔斷而粗銅絲沒有熔斷的原因是什么?(設電源電壓保持不變)
(1)你認為造成細銅絲熔斷而粗銅絲沒有熔斷的原因是什么?(請簡述理由)
(2)若粗銅絲電阻為0.01Ω,求:在5s內粗銅絲共產生的熱量。
(3)如果你家準備安裝一臺“220V 1500W”的電熱水器,你應用選用(較粗/較細)的銅導線用作連接線比較安全。
5.如圖9所示電路,電源兩端電壓保持不變,當開關S1閉合、S2斷開,滑動變阻器的滑片P移到B端時,燈L的電功率為PL,電流表的示數為I1;當開關S1斷開、S2閉合時,燈L的電功率為R1',電流表的示數為,I2,已知PL:P'L=9:25.
(1)求電流表的示數I1與I2的比值;
(2)當開關S1、S2又都斷開,滑動變阻器的滑片P在c點時,變阻器接入電路的電阻為Rc電壓表V1的示數為u1,電壓表V2的示數為U2,已知U1:U2=3:2,Rc的電功率為10W,這時燈L正常發光,通過閉合或斷開開關及移動滑動變阻器的滑片P,會形成不同的電路,在這些不同的電路中,電路消耗的最大功率與電路消耗的最小功率之比為3:1.求燈L的額定功率。
6.小明在研究性學習活動中,查閱到一種熱敏電阻的阻值隨溫度變化的規律如下表,并將該型號的熱敏電阻應用于如圖10所示由“控制電路”和“工作電路”組成的恒溫箱電路中。
“控制電路”由熱敏電阻R1、電磁鐵(線圈阻值R0=50Ω)、電源U1、開關等組成,當線圈中的電流大于或等于20mA時,繼電器的銜鐵被吸合,右邊工作電路則斷開;
“工作電路”由工作電源U2(U2=10V)、發熱電阻R2(R2=50Ω)、導線等組成,問:
(1)工作電路工作時的電流為多大?電阻R2的發熱功率為多大?
(2)若發熱電阻R2需提供1.2×104J的熱量,則工作電路要工作多長時間(不計熱量的損失)?
中圖分類號:G642.0 文獻標識碼:A文章編號:1006-3315(2014)05-155-002
在科學技術快速發展的今天,實施以創新精神和實踐能力為重點的素質教育,重要的著眼點是轉變學生的學習習慣和學習方式。大多數民考民預科生模仿性學習心理是構成接受知識的主要因素。這種依賴性強,靠模仿去接受知識的習慣,是一種較為簡單的學習心理,民考民預科生普遍認為物理難學。究其原因難在學生各方面能力與預科物理學習要求的差距大。預科階段,乃至大學階段,要求自主學習物理。不同于自學,它是指學生在教師的指導下,以學生自己的體驗、參與和探究為主,從自身社會生活實踐中獲取物理知識,并創造性地解決生活中的問題的一種學習方法。怎樣才能把課堂教學與探究性學習、發現性學習和自主性學習相結合?在大力倡導探究性實驗教學的今天,迫切需要大量優秀的、具有創新性的探究實驗來豐富我們的課堂教學。為此,我們立足民考民預科生學習特點,對探究式實驗教學作一些有益的嘗試,希望能夠引領學生較為深入地學習物理的相關理論、方法、技能;提高學生的科學素養,激發學生實驗探究的興趣;增強學生的創新意識;培養學生實事求是,嚴謹認真的科學態度;養成交流與合作的良好習慣;發展學生的實踐能力。本文就《閉合電路歐姆定律》一節做探究性實驗教學設計。
一、教材和教學對象分析
閉合電路的歐姆定律主要分為電動勢和閉合電路的歐姆定律兩部分。電動勢的概念是閉合電路歐姆定律的關鍵和基礎。其基本內容有兩個方面:電源電動勢由電源本身性質決定的,它表征了電源將其他形式的能轉化成電能本領的大小。電源電動勢等于電源沒有接入電路時兩極間的電壓,在閉合電路里電源電動勢等于內外電壓之和。本節難點是路端電壓和外電阻之間的關系。學生通過多媒體的仿真實驗記錄數據,導出規律,使學生有感性的認識,課后讓學生進入實驗室,在做好仿真實驗的前提下,進行實驗,驗證結論,減少盲目性。
二、教學目標
1.知識目標
理解電動勢的定義。理解閉合電路歐姆定律及其公式,并能熟練地用來解決有關的電路問題。理解路端電壓隨電流(或外電阻)關系的公式表達和圖象表達,并能用來分析、計算有關問題。知道閉合電路中能量的轉化。
2.能力目標
通過路端電壓與外電阻的關系實驗探究,培養學生利用“實驗研究,得出結論”的科學思路和方法。研究路端電壓與電流的關系公式、圖象及圖象的物理意義,培養學生應用數學工具解決物理學問題的能力,培養學生運用物理知識解決實際問題的能力。
3.情感態度與價值觀
通過多媒體仿真探究實驗和課后的學生探究實驗,激發學生求知欲和學習興趣,享受成功的樂趣,體會物理學研究的科學性。通過分析路端電壓與電流(外電阻)的關系,培養學生嚴謹的科學態度,感受物理之美。通過學生之間的討論、交流與協作探究,培養團隊合作精神。
三、教學重點
閉合電路歐姆定律。路端電壓與電流(外電阻)關系的公式表示及圖象表示。
四、教學難點
電動勢的概念。路端電壓與電流(外電阻)關系。
五、教學思路
《閉合電路歐姆定律》是學生感到較為難以理解的知識點,電動勢的物理意義的理解是掌握閉合電路歐姆定律的關鍵和基礎。首先讓學生課前感受生活中的一些電源,初步明確電源是將其他形式的能轉化成電能的裝置,讓學生自己用電壓表測量不同類型的電源兩極間的電壓,為引入電動勢的概念作鋪墊。再讓學生在電腦上進行仿真實驗,學生通過連接不同的開關,改變外電阻阻值,內電阻阻值,記錄電流、電壓,分析數據,探究路端電壓與外電阻(電流)的關系,得出路端電壓與外電阻(電流)的關系。然后在課堂仿真實驗的基礎上進入實驗室實驗。避免了盲目性,引發學生學習的興趣,再進行討論,解釋現象原因。講授閉合電路中的功率,進一步從能量的轉化角度說明電源是將其他形式的能轉化成電能的裝置。最后,利用兩道例題來應用閉合電路歐姆定律,并適當地延伸拓展,通過課外思考題,使學生對電動勢的概念有更深刻的理解。
六、教學方法:探究性實驗教學法、多媒體仿真實驗探究,實驗室驗證、實驗分析、討論等方法
(一)電源。展示不同型號、種類電池、手搖發電機,對小燈泡供電。電源不同,結構不同,但有相同的規律。演示:1用小燈泡點觸干電池,點觸蓄電池,小燈泡發光。2將小燈泡與手機電池相接,小燈泡發光。3手搖發電機,同樣能夠使小燈泡發光。學生得出結論:干電池、蓄電池是將化學能轉化成電能;手搖發電機是將機械能轉化成電能。
(二)電源的電動勢:模擬實驗,介紹電路圖(如圖1),介紹實驗儀器。得出內、外電路,內、外電壓的概念,指出電源內部有電阻。看電池內部(如圖2),電荷定向移動形成電流,電荷電勢能減小.從能量轉化的角度初步理解電動勢的物理意義。觀察仿真實驗:電場中兩點間電勢差在數值上等于什么?利用計算機課件進行模擬實驗(如圖3)【模擬實驗一】:不閉合S2、S3,只閉合S1,觀察V1的大小。問題思考:(1)閉合開關S1后,此時伏特表V1測得的電壓?(2)此時外電阻多大?學生回答:電動勢越大,電源把其他形式的能轉化成電能的本領越強。學生模擬實驗,分析得出(1)伏特表測電源電動勢;(2)外電路電阻無窮大。E在數值上等于外電路斷開時電源兩端點壓。
2 教材分析
《電阻的串聯和并聯》是九年級第十四章《探究電路》第四節的內容。本章內容充分體現了課標提出的從生活走向物理,從物理走向社會,注重多元探究等基本理念。本節教學內容不僅是對前面所學的串聯電路和并聯電路的電流、電壓特點以及歐姆定律的重要應用,同時也是今后學好電功、電功率的重要基礎,更是培養學生“等效替代”思想和實驗探究與理論推導相結合思想的重要載體。
3 教學目標
3.1 知識與技能。①通過實驗和理論推導理解串聯和并聯電路的等效電阻的計算公式。②會利用串聯、并聯電路總電阻的知識,解答和計算簡單的電路問題。③通過實驗探究,認識總電阻與分電阻的“等效替代”關系。
3.2 過程與方法。①培養學生積極參與科學探究活動,主動進行交流與討論的學習方法。②能用等效替代的思想學習物理知識。③能把物理概念與生活、生產實際相結合。
3.3 情感態度價值觀。激發學生對科學的求知欲,通過經歷基本的科學探究過程,學習科學探究方法,發展初步的科學探究能力,形成實事求事、尊重自然規律、樂于參與科學實踐的科學態度和科學精神,同時認識交流和合作的重要性。
4 教學重點
通過實驗法和理論推導法并舉掌握串聯電路和并聯電路總電阻的計算方法。
5 教學難點
借助等效替代的思想分析串聯、并聯電路的電阻特點。
6 教學準備
學生電源、演示電流表、20歐定值電阻二個、5歐定值電阻二個、10歐定值電阻一個、導線、開關等。
7 教學流程
事例引入——趣味探究——小組討論——實質升華——總結反饋。
8 教學過程
8.1 事例引入。師:同學們,你們喜歡足球嗎?(停頓)現假設你們正在看一場精彩的足球比賽,突然電視機壞了,經檢查里邊一個10歐定值電阻出現了問題,而身邊現在只有20歐的電阻和5歐的電阻若干,你有辦法立即解決問題嗎?(最好設計一個多媒體動畫調動學生學習熱情)
生:(討論并結合前面電路的串聯、并聯知識回答)把電阻串聯,把電阻并聯。
師:把電阻串聯、并聯后能行嗎?電阻串聯、并聯后他們對電路的控制作用難道不會發生改變嗎?
8.2 趣味探究。
師:下面我們就用一個有趣的實驗來驗證一下大家的想法是否能夠實現。
演示實驗(實驗設計如圖1,電阻裝在一個密封的盒子里面)
圖1
分別接通A、B、C以及所對應接線柱,讓同學們觀察電流表的讀數。
師:同學們,剛才你們觀察到電流表的讀數有什么樣的特點?
生:三次實驗電流表讀數相等。
師:那里面的電阻是怎樣的呢,也相同嗎?
打開盒子讓學生觀察里面電阻的結構,并通過里面實物講解相關概念:
電阻串聯:兩個(幾個)電阻首尾相連
電阻并聯:兩個(幾個)電阻首首相連
師:我們剛才經過實驗發現兩個電阻并聯或兩個電阻串聯以后對電路的控制作用可能與單獨一個電阻對電路的控制作用是相同的,在實際生活中我們就可以用這兩個并聯或串聯后的電阻去替代那一個電阻,這時我們就可以說這一個電阻是那兩個(幾個)電阻的總電阻。
師:同學們再仔細觀察,兩個電阻串聯后總電阻如何變化;兩個電阻并聯后總電阻如何變化?
生:通過觀察討論得出初步結論:
兩個電阻并聯后總電阻小于其中任何一個分電阻;兩個電阻串聯后總電阻大于其中任何一個分電阻。
8.3 小組探討。
師:同學們,通過剛才的分析我們已經得到了電阻串聯、并聯之后總電阻大小的一個定性結論,那么電阻串聯、并聯之后總電阻的大小應如何計算呢?下面就請大家通過小組合作的方式結合前面所學的歐姆定律以及串、并聯電路的電流、電壓特點解決這一問題。
8.3.1 串聯電路的總電阻。
師:請結合歐姆定律以及串聯電路的電壓特點用下圖的字母表示出總電壓與各電阻兩端電壓的關系。
圖2
生:運用歐姆定律表示出:U1=IR1 U2=IR2 U=IR、
運用串聯電路電壓特點得出:IR=IR1+IR2
結論:電阻串聯,其總電阻等于各個分電阻之和,即:R總=R1+R2+……
8.3.2 并聯電路的總電阻。
師:請結合歐姆定律以及并聯電路的電流特點用下圖的字母表示出總電流與各支路電流的關系。
圖3
生:運用歐姆定律表示出:I=U/R,I1=U/R1,I2=U/R2
運用并聯電路電流特點得出:1/R=1/R1+1/R2
結論:電阻并聯,其總電阻的倒數等于各個分電阻倒數之和,即:1/R總=1/R1+1/R2+……
8.4 實質升華。
師:剛才我們已經通過實驗和理論推導兩種途徑得出了電阻串聯和并聯之后總電阻的變化規律。同學們,你們知道這是為什么嗎?
教師引導學生進一步觀察串聯、并聯后的電阻的長度和橫截面積的變化情況并結合前面所學影響電阻大小的因素的相關知識得出結論。
生:電阻串聯相當與增加了導體長度,所以阻值會增加;電阻并聯相當于增加了電阻的橫截面積,所以阻值會減小。
8.5 總結反饋。①請同學們設計出兩種方案解決課題引入時提出的問題。②小組討論本堂課的收獲,及時解決新生成的問題。
附板書設計:
§14.4電阻的串聯和并聯
①串聯電路的總電阻等于各個分電阻之和,R總=R1+R2+……
②并聯電路的總電阻的倒數等于各個分電阻倒數之和,1/R總=1/R1+1/R2+……
③實質 串聯:增加導體長度
物理教材中所闡述的內容主要是經典物理學的基礎知識,這些理論是建立在牛頓時空觀的基礎上,以力學、電磁學為重點。本文就電磁學部分的教學談談自己的觀點。
一、電磁學的知識體系
電磁運動是物質的一種基本運動形式。電磁學的研究范圍是電磁現象的規律及其應用,其具體內容包括靜電現象、電流現象、磁現象、電磁輻射和電磁場等。為了便于研究,把電現象和磁現象分開處理,實際上,這兩種現象總是緊密聯系而不可分割的。透徹分析電磁學的基本概念、原理和規律以及它們的相互聯系,才能使孤立的、分散的教學變成系統化、結構化的教學。對此,應從以下三個方面來認真分析教材。
1.電磁學的兩種研究方式
整個電磁學的研究可分為以“場”和“路”兩個途徑進行。只有明確它們各自的特征及相互聯系,才能有計劃、有目的地提高學生的思維品質,培養學生的思維能力。
場是物質的相互作用的特殊方式。電磁學部分完全可用場的概念統一起來,靜電場、恒定電場、靜磁場、恒定磁場、電磁場等,組成一個關于場的體系。
“路”是“場”的一種特殊情況。物理教材以“路”為線的框架可理順為:靜電路、直流電路、磁路、交流電路、振蕩電路等。
“場”和“路”之間存在著內在的聯系。麥克斯韋方程是電磁場的普遍規律,是以“場”為基礎的,“場”是電磁運動的實質,因此可以說“場”是實質,“路”是方法。
2.認識物理規律
規律體現在一系列物理基本概念、定律、原理以及它們的相互聯系中。
物理定律是在對物理現象做了反復觀察和多次實驗,掌握了充分可靠的事實之后,進行分析和比較,找出它們相互之間存在的關系,并把這些關系用定律的形式表達出來。物理定律的形成,也是在物理概念的基礎上進行的。
“恒定電流”一章中重要的物理規律有歐姆定律、電阻定律和焦耳定律。歐姆定律是在金屬導電的基礎上總結出來的,對金屬導電、電解液導電適用,但對氣體導電是不適用的。歐姆定律的運用有對應關系,電阻是電路的物理性質,適用于溫度不變時的金屬導體。
“磁場”這一章闡明了磁與電現象的統一性,用研究電場的方法進行類比,可以較好地解決磁場和磁感應強度的概念。
“電磁感應”這一章,重要的物理規律是法拉第電磁感應定律和楞次定律。在這部分知識中,能的轉化和守恒定律是將各知識點串起來的主線。本章以電流、磁場為基礎,它揭示了電與磁相互聯系和轉化的重要方面,是進一步研究交流電、電磁振蕩和電磁波的基礎。電磁感應的重點和核心是感應電動勢。運用楞次定律不僅可判斷感應電流的方向,更重要的是它揭示了能量是守恒的。
“電磁振蕩和電磁波”一章是在電場和磁場的基礎上結合電磁感應的理論和實踐,進一步提出電磁振蕩形成統一的電磁場,對場的認識又上升了一步。麥克斯韋的電磁場理論總結了電磁場的規律,同時也把波動理論從機械波推進到電磁波而對物質的波動性的認識提高了一步。
3.通過電磁場所表現的物質屬性,使學生建立“世界是物質的”的觀點
電現象和磁現象總是緊密聯系而不可分割的。大量實驗證明,在電荷的周圍存在電場,每個帶電粒子都被電場包圍著。電場的基本特性就是對位于場中的其它電荷有力的作用,運動電荷的周圍除了電場外還存在著磁場。磁體的周圍也存在著磁場,磁場也是一種客觀存在的物質。磁場的基本特性就是對處于其中的電流有磁場力的作用。科學實驗證明電磁場可以脫離電荷和電流而獨立存在,電磁場是物質的一種形態。
運動的電荷(電流)產生磁場,磁場對其它運動的電荷(電流)有磁場力的作用,所有磁現象都可以歸結為運動電荷(電流)之間是通過磁場而發生作用的。麥克斯韋用場的觀點分析了電磁現象,得出結論:任何變化的磁場能夠在周圍空間產生電場,任何變化的電場能夠在周圍空間產生磁場。按照這個理論,變化的電場和變化的磁場總是相互聯系的,形成一個不可分割的統一場,這就是電磁場。電磁場由近及遠的傳播就形成電磁波。轉從場的觀點來闡述路。電荷的定向運動形成電流,產生電流的條件有兩個:一是存在可自由移動的電荷;二是存在電場。導體中電流的方向總是沿著電場的方向,從高電勢處指向低電勢處。導體中的電流是帶電粒子在電場中運動的特例,即導體中形成電流時,它的本身要形成電場又要提供自由電荷,當導體中電勢差不存在時,電流也隨之而終止。
二、以知識體系貫穿始終,使理論學習與技能訓練相融合
1.場的客觀存在及其物質性是電學教學中一個極為重要的問題。電場部分是學好電磁學的基礎和關鍵。電場強度、電勢、磁感應強度是反映電、磁場是物質的實質性概念。電場線、磁感應線是形象地描述場分布的一種手段。
二、基于信息技術的物理探究教學案例
閉合電路歐姆定律的傳統教學是:利用電池借助兩個電壓表,分別測量內外電路電壓,然后相加看其總和是否不變。學生可能會想:為什么會想到測量內、外電路電壓并求其和?此外,這個實驗由于電極勢壘造成實驗誤差不好解釋。為此,可以借助信息技術設計探究教學方式。
用視頻展臺投影圖2的實物線路圖,并記錄電壓表示數,2.9V。然后將電路改為按圖3連接。事先調節滑動變阻器到適當電阻值,然后再閉合開關S,測量電源兩端的電壓,電壓表示數為1.8V。此到學生產生了疑惑:兩次測量“電源”兩端為何不等?
教師引導學生猜想可能的原因,多數學生認為是由于實驗誤差引起的。教學過程中先不要判斷學生猜想的正誤,先讓學生觀察圖4電路中電表示數變化情況,結果發現電壓表示數變化,電流示數變小,反之,電壓表示數變小,電流示數變小,學生無法用用歐姆定律I = U/R來解釋,產生認知矛盾。這顯然不是實驗誤差引起的?問題出在何處?
對此現象,教學過程中不要硬性要求學生進行猜想與假設,要另設教學環境,因為對這個現象的假設是比較困難的(除非學生已經知道電池有內電阻)。
教學過程中指出:平常我們做實驗需要測量數據,然后對數據進行分析處理,并得出相應的結論。那么針對圖4所示的實驗我們可以做些什么呢?
測量幾組I、U數據后,可分析產生上述現象的原因。
接著測量圖4電路,得到如上表所示的幾組數據。將表中數據利用Excel處理作出圖像,如圖5所示。(本文寫作時已經將Excel圖改畫為bmp圖)
引導探究:I-U圖線是一條傾斜直線說明了什么? (學生:說明電壓表示數隨電流表示數增大而均勻減小)
問題:該圖像與我們學過的哪些圖像相似。
學生:勻減速直線運動的速度圖像,v = v0 + at(a < 0)。
問題:圖5的圖線能否用同樣的方式表示。
學生:可以寫成U = U0- kI形式,其中k為常數,本實驗中U = 3.0- 4.0I(注:單位為SI制)。
問題:通過電腦動畫將圖5的圖線向兩邊延長(圖5中虛線部),提出交點(0,3.0 )、(0.75,0),分別表示什么意義?
學生:3.0V表示電路斷開時電壓表讀數(學生還未思考圖2示數為2.9V,教學中可以暫時不點破),0.75A表示電源被短路時的電流。
問題:電源被短路,還有電流?不是無窮大嗎?
學生猜想:電源內部可能有電阻。
教師:為什么?
學生分析:由U = U0- kI可知在U = 0時,電流為I0,則k = U0/I0,則k單位應是V/A,即歐姆,故猜測電源內部有電阻,本實驗中電源內電阻為4.0Ω。
學生在處理實驗數據過程中,通過聯想與類比,認識到電源存在內阻,實現了認識的飛躍。
一、伏安法測電阻的原理
用電壓表測出待測電阻兩端的電壓U,用電流表測出通過待測電阻的電流I,利用部分電路歐姆定律可以算出待測電阻的阻值Rx,即Rx=U/I,這就是待測電阻的測量值。
二、伏安法測電阻的系統誤差分析
1.電流表外接法
在這種電路中,電壓表的示數是加在待測電阻Rx兩端的真實電壓,但由于電壓表內阻分流的影響,電流表的示數比通過電阻的真實電流大,按這種電路測出的電阻值實質上是電壓表內阻和待測電阻Rx并聯后的總阻值,所以Rx測量值比真實值小。設電壓表的示數為U,電流表的示數為I,通過電阻的電流為IR,通過電壓表的電流為IV,則I=IR+IV,所以R真=>R測=測量值比真實值偏小。這里的系統誤差來源于電壓表的分流作用,分流越小,誤差越小,相對誤差δ=
=。所以該電路適合測量小電阻,即當滿足條件Rx
2.電流表內接法
在這種電路中,電流表的示數是通過待測電阻Rx的真實電流,但由于電流表內阻分壓的影響,電壓表的示數比加在待測電阻Rx兩端的電壓大,所以按這種電路測出的待測電阻的阻值比真實值偏大。設電流表的示數為I,電壓表的示數為U,加在待測電阻Rx兩端的電壓為UR,加在電流表兩端的電壓為UA,則U=UR+UA,所以R真=>R測=測量值比真實值偏大。這里的系統誤差來源于電流表的分壓,分壓越小,誤差越小,相對誤差δ=
=。所以該電路適合測量大電阻,即當滿足條件Rx>>RA時,采用電流表內接法測量系統誤差小。為了幫助學生理解和記憶電流表兩種連接方式的系統誤差特點,我在課堂教學中和同教研組的老師們共同總結了如下規律:“大內偏大;小外偏小。”即:電阻值大的電阻采用電流表內接法測量,測量值比真實值偏大;電阻值小的電阻采用電流表外接法測量,測量值比真實值偏小。
三、伏安法測電阻電流表連接方式的選擇方法
1.比較法。若已知待測電阻的大約值Rx,電流表的內阻RA和電壓表的內阻RV可以分別計算出電流表外接法的相對誤差和電流表內接法的相對誤差兩個比值,然后進行比較。
(1)若
(2)若>,則選用電流表內接法,系統誤差小;
(3)若=,則電流表兩種接法都可以。
2.算術根法。若已知待測電阻的大約值Rx,電流表的內阻RA和電壓表的內阻RV可以分別計算出Rx和兩個比值,然后進行比較。
(1)若Rx
電磁運動是物質的一種基本運動形式.電磁學的研究范圍是電磁現象的規律及其應用.其具體內容包括靜電現象、電流現象、磁現象,電磁輻射和電磁場等.為了便于研究,把電現象和磁現象分開處理,實際上,這兩種現象總是緊密聯系而不可分割的.透徹分析電磁學的基本概念、原理和規律以及它們的相互聯系,才能使孤立的、分散的教學變成系統化、結構化的教學.對此,應從以下三個方面來認真分析教材.
1.電磁學的兩種研究方式
整個電磁學的研究可分為以“場”和“路”兩個途徑進行,這兩種方式均在高中教材里體現出來.只有明確它們各自的特征及相互聯系,才能有計劃、有目的地提高學生的思維品質,培養學生的思維能力.
場的方法是研究電磁學的一般方法.場是物質,是物質的相互作用的特殊方式.中學物理的電磁學部分完全可用場的概念統帥起來,靜電嘗恒定電嘗恒定磁嘗靜磁嘗似穩電磁嘗迅變電磁場等,組成一個關于場的系統,該系統包括中學物理電學部分的各章內容.
“路”是“場”的一種特殊情況.中學教材以“路”為線的大骨架可理順為:靜電路、直流電路、磁路、交流電路、振蕩電路等.
“場”和“路”之間存在著內在的聯系.麥克斯韋方程是電磁場的普遍規律,是以“場”為基礎的.“場”是電磁運動的實質,因此可以說“場”是實質,“路”是方法.
2.物理知識規律物
理知識的規律體現為一系列物理基本概念、定律和原理的規律,以及它們的相互聯系.
物理定律是在對物理現象做了反復觀察和多次實驗,掌握了充分可靠的事實之后,進行分析和比較找出它們相互之間存在著的關系,并把這些關系用定律的形式表達出來.物理定律的形成,也是在物理概念的基礎上進行的.但是,物理定律并不是絕對準確的,在實驗基礎上建立起來的物理定律總是具有近似性和局限性,因此其適用范圍有一定的局限性.
第二冊第一章“電潮重要的物理規律是庫侖定律.庫侖定律的實驗是在空氣中做的,其結果跟在真空中相差很小.其適用范圍只適用于點電荷,即帶電體的幾何線度比它們之間的距離小到可以忽略不計的情況.
“恒定電流”一章中重要的物理規律有歐姆定律、電阻定律和焦耳定律.歐姆定律是在金屬導電的基礎上總結出來的,對金屬導電、電解液導電適用,但對氣體導電是不適用的.歐姆定律的運用有對應關系.電阻是電路的物理性質,適用于溫度不變時的金屬導體.
“磁場”這一章闡明了磁與電現象的統一性,用研究電場的方法進行類比,可以較好地解決磁場和磁感應強度的概念.
“電磁感應”這一章,重要的物理規律是法拉第電磁感應定律和楞次定律.在這部分知識中,能的轉化和守恒定律是將各知識點串起來的主線.本章以電流、磁場為基礎,它揭示了電與磁相互聯系和轉化的重要方面,是進一步研究交流電、電磁振蕩和電磁波的基礎.電磁感應的重點和核心是感應電動勢.運用楞次定律不僅可判斷感應電流的方向,更重要的是它揭示了能量是守恒的.
“電磁振蕩和電磁波”一章是在電場和磁場的基礎上結合電磁感應的理論和實踐,進一步提出電磁振蕩形成統一的電磁場,對場的認識又上升了一步.麥克斯韋的電磁場理論總結了電磁場的規律,同時也把波動理論從機械波推進到電磁波而對物質的波動性的認識提高了一步.
3.通過電磁場在各方面表現的物質屬性,使學生建立“世界是物質的”的觀點
電現象和磁現象總是緊密聯系而不可分割的.大量實驗證明在電荷的周圍存在電場,每個帶電粒子都被電場包圍著.電場的基本特性就是對位于場中的其它電荷有力的作用.運動電荷的周圍除了電場外還存在著另一種唱—磁場.磁體的周圍也存在著磁場.磁場也是一種客觀存在的物質.磁場的基本特性就是對處于其中的電流有磁場力的作用.現在,科學實驗和廣泛的生產實踐完全肯定了場的觀點,并證明電磁場可以脫離電荷和電流而獨立存在,電磁場是物質的一種形態.
運動的電荷(電流)產生磁場,磁場對其它運動的電荷(電流)有磁場力的作用.所有磁現象都可以歸結為運動電荷(電流)之間是通過磁場而發生作用的.麥克斯韋用場的觀點分析了電磁現象,得出結論:任何變化的磁場能夠在周圍空間產生電場,任何變化的電場能夠在周圍空間產生磁場.按照這個理論,變化的電場和變化的磁場總是相互聯系的,形成一個不可分割的統一場,這就是電磁場.電磁場由近及遠的傳播就形成電磁波.
從場的觀點來闡述路.電荷的定向運動形成電流.產生電流的條件有兩個:一是存在可自由移動的電荷;二是存在電場.導體中電流的方向總是沿著電場的方向,從高電勢處指向低電勢處.導體中的電流是帶電粒子在電場中運動的特例,即導體中形成電流時,它的本身要形成電場又要提供自由電荷.當導體中電勢差不存在時,電流也隨之而終止.
二、以“學科體系的系統性”貫穿始終,使知識學習與智能訓練融合于一體
1.場的客觀存在及其物質性是電學教學中一個極為重要的問題.第一章“電潮是學好電磁學的基礎和關鍵.電場強度、電勢、磁嘗磁感應強度是反映電、磁場是物質的實質性概念.電場線,磁感線是形象地描述場分布的一種手段.要進行比較,找出兩種力線的共性和區別以加強對場的理解.
2.電磁場的重要特性是對在其中的電荷、運動的電荷、電流有力的作用.在教學中要使學生認識場和受場作用這兩類問題的聯系與區別,比如,場不是力,電勢不是能等.場中不同位置場的強弱不同,可用受場力者受場力的大小(方向)跟其特征物理量的比值來描述場的強弱程度.在電場中用電場力做功,說明場具有能量.通常說“電荷的電勢能”是指電荷與電場共同具有的電勢能,離開了電場就談不上電荷的電勢能了.
電磁運動是物質的一種基本運動形式.電磁學的研究范圍是電磁現象的規律及其應用.其具體內容包括靜電現象、電流現象、磁現象,電磁輻射和電磁場等.為了便于研究,把電現象和磁現象分開處理,實際上,這兩種現象總是緊密聯系而不可分割的.透徹分析電磁學的基本概念、原理和規律以及它們的相互聯系,才能使孤立的、分散的教學變成系統化、結構化的教學.對此,應從以下三個方面來認真分析教材.
1.電磁學的兩種研究方式
整個電磁學的研究可分為以“場”和“路”兩個途徑進行,這兩種方式均在高中教材里體現出來.只有明確它們各自的特征及相互聯系,才能有計劃、有目的地提高學生的思維品質,培養學生的思維能力.
場的方法是研究電磁學的一般方法.場是物質,是物質的相互作用的特殊方式.中學物理的電磁學部分完全可用場的概念統帥起來,靜電嘗恒定電嘗恒定磁嘗靜磁嘗似穩電磁嘗迅變電磁場等,組成一個關于場的系統,該系統包括中學物理電學部分的各章內容.
“路”是“場”的一種特殊情況.中學教材以“路”為線的大骨架可理順為:靜電路、直流電路、磁路、交流電路、振蕩電路等.
“場”和“路”之間存在著內在的聯系.麥克斯韋方程是電磁場的普遍規律,是以“場”為基礎的.“場”是電磁運動的實質,因此可以說“場”是實質,“路”是方法.
2.物理知識規律物
理知識的規律體現為一系列物理基本概念、定律和原理的規律,以及它們的相互聯系.
物理定律是在對物理現象做了反復觀察和多次實驗,掌握了充分可靠的事實之后,進行分析和比較找出它們相互之間存在著的關系,并把這些關系用定律的形式表達出來.物理定律的形成,也是在物理概念的基礎上進行的.但是,物理定律并不是絕對準確的,在實驗基礎上建立起來的物理定律總是具有近似性和局限性,因此其適用范圍有一定的局限性.
第二冊第一章“電潮重要的物理規律是庫侖定律.庫侖定律的實驗是在空氣中做的,其結果跟在真空中相差很小.其適用范圍只適用于點電荷,即帶電體的幾何線度比它們之間的距離小到可以忽略不計的情況.
“恒定電流”一章中重要的物理規律有歐姆定律、電阻定律和焦耳定律.歐姆定律是在金屬導電的基礎上總結出來的,對金屬導電、電解液導電適用,但對氣體導電是不適用的.歐姆定律的運用有對應關系.電阻是電路的物理性質,適用于溫度不變時的金屬導體.
“磁場”這一章闡明了磁與電現象的統一性,用研究電場的方法進行類比,可以較好地解決磁場和磁感應強度的概念.
“電磁感應”這一章,重要的物理規律是法拉第電磁感應定律和楞次定律.在這部分知識中,能的轉化和守恒定律是將各知識點串起來的主線.本章以電流、磁場為基礎,它揭示了電與磁相互聯系和轉化的重要方面,是進一步研究交流電、電磁振蕩和電磁波的基礎.電磁感應的重點和核心是感應電動勢.運用楞次定律不僅可判斷感應電流的方向,更重要的是它揭示了能量是守恒的.
“電磁振蕩和電磁波”一章是在電場和磁場的基礎上結合電磁感應的理論和實踐,進一步提出電磁振蕩形成統一的電磁場,對場的認識又上升了一步.麥克斯韋的電磁場理論總結了電磁場的規律,同時也把波動理論從機械波推進到電磁波而對物質的波動性的認識提高了一步.
3.通過電磁場在各方面表現的物質屬性,使學生建立“世界是物質的”的觀點
電現象和磁現象總是緊密聯系而不可分割的.大量實驗證明在電荷的周圍存在電場,每個帶電粒子都被電場包圍著.電場的基本特性就是對位于場中的其它電荷有力的作用.運動電荷的周圍除了電場外還存在著另一種唱—磁場.磁體的周圍也存在著磁場.磁場也是一種客觀存在的物質.磁場的基本特性就是對處于其中的電流有磁場力的作用.現在,科學實驗和廣泛的生產實踐完全肯定了場的觀點,并證明電磁場可以脫離電荷和電流而獨立存在,電磁場是物質的一種形態.
運動的電荷(電流)產生磁場,磁場對其它運動的電荷(電流)有磁場力的作用.所有磁現象都可以歸結為運動電荷(電流)之間是通過磁場而發生作用的.麥克斯韋用場的觀點分析了電磁現象,得出結論:任何變化的磁場能夠在周圍空間產生電場,任何變化的電場能夠在周圍空間產生磁場.按照這個理論,變化的電場和變化的磁場總是相互聯系的,形成一個不可分割的統一場,這就是電磁場.電磁場由近及遠的傳播就形成電磁波.
從場的觀點來闡述路.電荷的定向運動形成電流.產生電流的條件有兩個:一是存在可自由移動的電荷;二是存在電場.導體中電流的方向總是沿著電場的方向,從高電勢處指向低電勢處.導體中的電流是帶電粒子在電場中運動的特例,即導體中形成電流時,它的本身要形成電場又要提供自由電荷.當導體中電勢差不存在時,電流也隨之而終止.
二、以“學科體系的系統性”貫穿始終,使知識學習與智能訓練融合于一體
1.場的客觀存在及其物質性是電學教學中一個極為重要的問題.第一章“電潮是學好電磁學的基礎和關鍵.電場強度、電勢、磁嘗磁感應強度是反映電、磁場是物質的實質性概念.電場線,磁感線是形象地描述場分布的一種手段.要進行比較,找出兩種力線的共性和區別以加強對場的理解.
2.電磁場的重要特性是對在其中的電荷、運動的電荷、電流有力的作用.在教學中要使學生認識場和受場作用這兩類問題的聯系與區別,比如,場不是力,電勢不是能等.場中不同位置場的強弱不同,可用受場力者受場力的大小(方向)跟其特征物理量的比值來描述場的強弱程度.在電場中用電場力做功,說明場具有能量.通常說“電荷的電勢能”是指電荷與電場共同具有的電勢能,離開了電場就談不上電荷的電勢能了.