歐姆定律的適用范圍匯總十篇

時間:2023-07-28 17:05:41

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇歐姆定律的適用范圍范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

篇(1)

關鍵詞:是對物理規律的一種表達形式。通過大量的觀察、實驗歸納而成的結論。反映物理現象在一定條件下發生變化過程的必然關系。物理定律的教學應注意:首先要明確、掌握有關物理概念,再通過實驗歸納出結論,或在實驗的基礎上進行邏輯推理(如牛頓第一定律)。有些物理量的定義式與定律的表式相同,就必須加以區別(如電阻的定義式與歐姆定律的表式可具有同一形式R=U/I),且要弄清相關的物理定律之間的關系,還要明確定律的適用條件和范圍。

(1)牛頓第一定律采用邊講、邊討論、邊實驗的教法,回顧“運動和力”的歷史。消除學生對力的作用效果的錯誤認識;培養學生科學研究的一種方法——理想實驗加外推法。教學時應明確:牛頓第一定律所描述的是一種理想化的狀態,不能簡單地按字面意義用實驗直接加以驗證。但大量客觀事實證實了它的正確性。第一定律確定了力的涵義,引入了慣性的概念,是研究整個力學的出發點,不能把它當作第二定律的特例;慣性質量不是狀態量,也不是過程量,更不是一種力。慣性是物體的屬性,不因物體的運動狀態和運動過程而改變。在應用牛頓第一定律解決實際問題時,應使學生理解和使用常用的措詞:“物體因慣性要保持原來的運動狀態,所以……”。教師還應該明確,牛頓第一定律相對于慣性系才成立。地球不是精確的慣性系,但當我們在一段較短的時間內研究力學問題時,常常可以把地球看成近似程度相當好的慣性系。

(2)牛頓第二定律在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應請注意:公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍

(3)萬有引力定律教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力恒量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。

篇(2)

二、牛頓第二定律。在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應注意公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。

三、萬有引力定律。教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力常量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。

四、機械能守恒定律。這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不做功或所做的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。

五、動量守恒定律。歷史上,牛頓第二定律是以F=dP/dt的形式提出來的。所以有人認為動量守恒定律不能從牛頓運動定律推導出來,主張從實驗直接總結。但是實驗要用到氣墊導軌和閃光照相,就目前中學的實驗條件來說,多數難以做到。即使做得到,要在課堂里準確完成實驗并總結出規律也非易事。故一般教材還是從牛頓運動定律導出,再安排一節“動量和牛頓運動定律”。這樣既符合教學規律,也不違反科學規律。中學階段有關動量的問題,相互作用的物體的所有動量都在一條直線上,所以可以用代數式替代矢量式。學生在解題時最容易發生符號的錯誤,應該使他們明確,在同一個式子中必須規定統一的正方向。動量守恒定律反映的是物體相互作用過程的狀態變化,表式中各項是過程始、末的動量。用它來解決問題可以使問題大大地簡化。若物體不發生相互作用,就沒有守恒問題。在解決實際問題時,如果質點系內部的相互作用力遠比它們所受的外力大,就可略去外力的作用而用動量守恒定律來處理。動量守恒定律是自然界最重要、最普遍的規律之一。無論是宏觀系統或微觀粒子的相互作用,系統中有多少物體在相互作用,相互作用的形式如何,只要系統不受外力的作用(或某一方向上不受外力的作用),動量守恒定律都是適用的。

篇(3)

歐姆定律是初中物理電學部分的核心內容,也是中考中考點的重點內容、難點內容。歐姆定律掌握的好壞直接影響學生的考試成績,要多用時間將這塊知識夯實,才能取得高考的勝利。

一、明確歐姆定律的內容

1、實驗思想和方法

歐姆定律在教材上是通過在“控制變量法”的實驗思想基礎上歸納總結出來的:即在控制電阻不變,得到通過導體的電流跟導體兩端的電壓成正比;控制導體兩端的電壓不變,得到通過導體的電流跟導體的電阻成反比。由此得到了電路中電流與電壓、電阻之間的關系。

2、歐姆定律的表達式

由實驗總結和歸納出歐姆定律:通過導體的電流跟導體兩端的電壓成正比,跟導體的電阻成反比。

表達式為:I=U/R;I的單位是安(A),U的單位是伏(V),R的單位是歐(Ω);導出式:U=IRR=U/I

注意表達式中的三個物理量之間的關系式是一一對應的關系,即具有同一時間,同一段導體的關系。

3、歐姆定律的應用條件

(1).歐姆定律只適用于純電阻電路;

(2).歐姆定律只適用于金屬導電和液體導電,而對于氣體、半導體導電一般不適用;

(3).歐姆定律表達式I=U/R表示的是研究不包含電源在內的“部分電路”;

(4).歐姆電律中“通過”的電流I、“兩端”的電壓U及“導體”的電阻R都是同一個導體或同一段電路上對應的物理量,不同導體之間的電流、電壓和電阻間不存在上述關系。

4.區別I=U/R和R=U/I的意義

歐姆定律中I=U/R表示導體中的電流的大小取決于這段導體兩端的電壓和這段導體的電阻。當導體中的U或R變化時,導體中的I將發生相應的變化。可見,I、U、R都是變量。另外,I=U/R還反映了導體兩端保持一定的電壓,是導體形成持續電流的條件。若R不為零,U為零,則I也為零;若導體是絕緣體R可為無窮大,即使它的兩端有電壓,I也為零。因此,在歐姆定律I=U/R中,當R一定時I與U成正比;當U一定時I與R成反比。

R=U/I是歐姆定律推導得出的,表示一段導體兩端的電壓跟這段導體中的電流之比等于這個導體的電阻。它是電阻的計算式,而不是它的決定式。導體的電阻反映了導體本身的一種性質,因此,在導出式R=U/I中R與I、U不成比例。

對于給定的一個導體,比值U/I是個定值;而對于不同的導體,這個比值是不同的。不能認為導體的電阻跟電壓和電流有關。

二、歐姆定律的應用

在運用歐姆定律,分析、解決實際問題,進行有關計算時應注意以下幾方面的問題:

1.要分析清楚電路圖,搞清楚要研究的是哪一部分電路。這部分電路的連接方式是串聯,還是并聯,這是解題的關鍵。

2.利用歐姆定律解題時,不能把不同導體上的電流、電壓和電阻代入表達式I=U/R及導出式U=IR和R=U/I進行計算,也不能把同一導體不同時刻、不同情況下的電流、電壓和電阻代入歐姆定律的表達式及導出式進行計算。為了避免混淆,便于分析問題,最好在解題前先根據題意畫出電路圖,在圖上標明已知量的符號、數值和未知量的符號。同時要給“同一段電路”同一時刻的I、U、R加上同一種腳標;不能亂套公式,并注意單位的統一。

3.要搞清楚改變和控制電路結構的兩個基本因素:一是開關的通、斷情況;二是滑動變阻器連入電路中的阻值發生變化時對電路的影響情況。因此,電路變化問題主要有兩種類型:一類是由于變阻器滑片的移動,引起電路中各個物理量的變化;另一類是由于開關的斷開或閉合,引起電路中各個物理量的變化。解答電路變化問題的思路為:先看電阻變化,再根據歐姆定律和串、并聯電路的特點來分析電壓和電流的變化。這是電路分析的基礎。

三、典型例題剖析

例1 在如圖所示的電路中,R=12Ω,Rt的最大阻值為18Ω,當開關閉合時,滑片P位于最左端時電壓表的示數為16V,那么當滑片P位于最右端時電壓表的示數是多少?

解析:分析本題的電路得知是定值電阻R和滑動變阻器Rt 串聯的電路,電壓表是測R兩端電壓的。當滑動變阻器的滑片P位于最左端時電壓表的示數為6V,說明電路中的總電壓(電源的電壓)是6V,而當滑動變阻器的滑片P位于最右端時,電壓表僅測R兩端的電壓,而此時電壓表的示數小于6V。

滑片P位于變阻器的最右端時的電流為I=U1R+Rt=6V12Ω+18Ω=0.2A。此時電壓表的示數為U2=IR=0.2A×12Ω=2.4V。

例2 如圖所示,滑動變阻器的滑片P向B滑動時,電流表的示數將;電壓表的示數將。(填“變大”、“變小”或“不變”)如此時電壓表的示數為2.5V,要使電壓表的示數變為3V,滑片P應向端滑動。

圖1

分析:根據歐姆定律I=UR,電源電壓不變時,電路中的電流跟電阻成反比。此電路中滑動變阻器接入電路的電阻是AP段,動滑片P向B滑動時,AP段變長,電阻變大,所以電流變小。電壓表是測Rx兩端的電壓,根據Ux=IRx可知,Rx不變,I變小,電壓表示數變小。反之,要使電壓表示數變大,滑片P應向A端滑動。

答案:變小;變小;A。

篇(4)

物理概念是物理知識的核心內容.著名科學家錢學森曾說過:“學習理科的關鍵是概念清,多練習.”學生的物理概念是否清楚對學好物理至關重要.學習物理概念需要重視物理概念的形成過程.學習物理概念需要知道為什么要引入它,它是如何定義的,定義式是什么,單位是什么,如何測量(或測定),有什么應用等.例如:密度是一個十分重要的物理概念,學習它要重視以下過程:在物理學中為了比較相同體積的不同物質的質量一般不同的特性引入了密度,單位體積的某種物質的質量叫做這種物質的密度,定義式是ρ=m/V,國際單位是kg/m3,常用單位是g/cm3,測密度的方法很多,但基本方法是測質量,測體積,再利用密度公式計算出密度,應用有求密度,求質量,求體積等等.速度、壓強、功率、比熱容、電功率等等都是重要的物理概念,望廣大師生重視其形成過程.

2學習物理規律需要重視規律的形成過程

物理規律是物理知識中的最核心內容,多數是從物理事實的分析中直接概括出來的,學習物理規律更需要重視物理規律的形成過程.要知道物理規律的實驗基礎、基本內容、數學表達式、適用范圍、應用等等.例如:歐姆定律是電學中最重要的規律之一,學習它,我們要知道歐姆定律的實驗基礎,歐姆定律是研究電流與電壓、電阻的關系,首先要用到控制變量法,電阻一定,研究電流與電壓的關系,電壓一定,研究電流與電阻的關系.電阻一定,可找一定值電阻(R=5 Ω),研究電流與電壓的關系,實際上要看電壓變,電流變不變,若變,如何變.如何改變定值電阻兩端的電壓呢?方法一:可以改變電源的電壓,方法二:可以通過滑動變阻器來改變定值電阻兩端的電壓.通過探究實驗得出電阻一定時,電流與電壓成正比.電壓一定,可找一穩壓電源,也可通過滑動變阻器來保持電阻兩端的電壓不變,研究電流與電阻的關系,實際上是看電阻變,電流變不變,若變,怎么變?改變電阻,還要知道它的值,可以逐次更換定值電阻(5 Ω、10 Ω、15 Ω),移動滑動變阻器,保持電阻兩端的電壓(U=3 V)不變,從而測出相應的電流值.分析實驗數據得出,電壓一定時,電流與電阻成正比.

歐姆定律的基本內容是:通過導體的電流,跟導體兩端的電壓成正比,跟導體的電阻成反比.數學表達式為I=U/R,歐姆定律是在金屬導體做實驗的基礎上,總結出來的,一定適用于金屬導體,對于其它的導體是否適用,要用實驗驗證,通過實驗證明,歐姆定律還適用于電解液導電,不適用于氣體導電,可見歐姆定律的適用范圍是適用于金屬導體,電解液導電,不適用于氣體導電.應用有三方面:(1)求電流,(2)求電壓,(3)求電阻.解題時要注意I、U、R三個物理量的對應性、同時性、統一性,即對應于同一導體、同一段電路,同一時刻、同一狀態,單位要統一于國際單位.

3學生實驗需要重視實驗過程

學習物理要以觀察、實驗為基礎,觀察自然界中的物理現象,進行學生實驗,能夠使學生對物理事實獲得具體的明確認識,這種認識是理解物理概念和規律的必要的基礎.學生實驗需要重視實驗過程,如要了解每個學生實驗的實驗目的、實驗原理、實驗方法、需要測量的物理量、實驗器材、實驗步驟、實驗記錄、實驗結論、必要的誤差分析等等都應該清楚.

4科學探究需要重視探究過程

科學探究就是讓學生模擬科學家的工作過程,按照一定的科學思維程序探索學習的過程,從中學習科學方法、發展科學探究所需要的能力、增進對科學探究的理解,體驗探究過程的心理感受.科學探究需要重視探究過程.科學探究的過程是一個創造的過程,而創造力的核心是創造性思維.因此,探究實質是一個思維的過程,這個思維的過程是模擬科學工作者進行科研的思維程序來進行的,這種思維程序就是學生科學探究的程序步驟.即提出問題、猜想與假設、制定計劃與設計實驗、進行實驗與收集證據、分析與論證、評估、交流與合作.

5做物理習題需要重視解題過程

學習物理要求概念清,多練習.可見做物理習題很重要,做題可以幫助我們鞏固所學的知識,檢驗學習效果,錘煉思維的靈活性,全面提高學生的科學素養,培養學生觀察、實驗能力,分析概括能力,運用物理知識解決簡單的實際問題的能力,以及創新精神和實踐能力.物理題型很多,如填空題、選擇題、實驗題、探究題、簡答題、計算題、作圖題、推理題等等.無論是做何種題型的物理習題,都需要重視解題過程.不同的題型,有不同的解題要求,不同的解題方法,不同的解題過程.一般來說,無論是做何種物理習題,都要正確理解題意,正確審題;明確相應的物理過程,物理情景,建立物理模型;運用相應的物理概念、物理規律,直接得出結果或結論.稍微有點靈活性,有點難度的題目,要分清層次,理清思路,找出聯系,或進行物理公式變換或公式推導,或運用數學思想(如列方程、列方程組)求解.最后就是檢查.

6學習物理需要重視有的物理量是過程量

物理學所研究的許多問題,都直接涉及到某一物理現象發生的整個過程,或者是過程中的某些狀態.因此,相應地就引人了許多關于描述某些物理過程的過程量和用來描述某些特定的物理狀態的狀態量.

篇(5)

中圖分類號:G633.7 文獻標識碼:A 文章編號:1992-7711(2016)12-0057

《歐姆定律》作為重要的物理規律,不僅是電流、電阻、電壓等電學知識的延伸,還揭示了電流、電壓、電阻這三個重要的電學量之間的必然聯系,是電學中最基本的物理規律,是分析解決電路問題的金鑰匙。在利用歐姆定律進行計算時,強調電流、電壓、電阻這三個物理量的同時性和同一性;加強學生對于這些問題的理解,對于后續課程測量電阻、電功、電功率的學習,起到良好的促進作用。因此,對于電學中的第一個規律的學習,教師應該注重學生學習能力的培養。

一、在教學中發現學生容易存在的問題分析

1. 進行電學實驗探究時,往往要求學生設計電路圖,很多學生在設計時不能一次將電路圖設計完整。

2. 從學生做題情況來看,學生不容易弄清楚控制變量法的作用。在歷年中考題中,常有這樣的題目:在探究電流與電阻的關系時,如將電路中的定值電阻從5歐姆換成10歐姆,將怎樣保證電壓不變?如何移動滑動變阻器?此類題目的得分率不高。

3. 在運用歐姆定律進行計算時,對于復雜一點的電路,如電路中的用電器不止一個時,學生往往容易將公式寫出,數據生搬硬套,亂算一通。這樣的習慣對于后續課程――電功、電功率的計算也產生了不良的影響。

針對學生的以上問題,筆者認為原因主要出在以下幾個地方:(1)對問題的分析缺乏全面的考慮。(2)對于控制變量法的應用不夠熟練,但電路分析有待加強。(3)對于各個物理量之間的因果關系沒有弄清楚。沒有理解到電阻或電壓的變化引起了電流的變化。(4)沒有理解歐姆定律的同時性和同一性。

二、結合教科版教材,如何在教學中培養學生的學習能力

筆者認為,結合教材情況以及學生的學習情況,我們可以在以下幾個地方做好細節處理,讓學生養成良好的學習習慣,培養學生學習能力的目的。

1. 實驗設計:分步探究,嘗試錯誤,完善設計,培養學生養成縝密的思維能力

在第一課時的教學中,教學重點在于如何通過實驗探究得出電流與電壓、電阻之間的關系。教師在提出電流大小與什么因素有關的問題時,學生根據以往的學習經驗,猜想出電壓、電阻會影響電流的大小。教師應引導學生用控制變量法探究它們之間具體有什么關系。從而將所探究的問題分為兩個小課題來進行,即電流與電壓的關系和電流與電阻的關系。在進行第一個小課題:探究電流與電壓的關系時,學生在設計電路圖的時候,容易根據自己的經驗將電流表、電壓表接入電路,而沒有接入滑動變阻器。

教師不必及時指出不足,可以進行展示以后,再提問怎樣改變電路中定值電阻兩端的電壓?這時學生可能會想到要用改變電源電壓的方法,但是這樣做不夠方便。如果用滑動變阻器來調節是最方便的。這時才設計出準確的電路圖。學生根據之前所學的串聯分壓的知識,很容易理解當滑動變阻器的阻值發生變化的時候,電路中定值電阻兩端的電壓會發生變化,而電流也會隨之發生改變。同樣,設計好的電路圖也可以用于第二個課題的探究。這種不斷地讓學生對問題作出反應,不斷調整自己的設計方案,最后走向完善,這樣做符合學生的認知規律。

2. 重視實驗探究的過程,培養學生的動手能力以及發現問題后尋找解決方法的能力

對于兩個課題的實驗,必須由學生自己在教師的引導下完成。絕不能因為趕教學進度而由教師代勞,讓學生只是簡單記下數據,分析數據得出規律。學生只有在實驗過程中才會發現問題。如課題二:在電壓不變時,探究電流與電阻的關系中,學生就會發現沒有移動滑動變阻器,而將定值電阻改變時,電壓表的示數也會隨之發生改變。那如何保證電壓表的示數不變呢?學生才會自己去想辦法通過移動滑動變阻器來完成。那滑動變阻器的移動是否有規律可循?學生通過自己的實驗,才會發現其中的規律。有了這樣的經驗以后,進行理論分析問題也就變得容易了。而具備了動手能力及解決問題的能力后,在后續課程測電阻、測電功率的學習中,也就較為輕松了。

3. 對于實驗結論的得出,要把握其中的因果關系,培養了學生的邏輯思維能力

雖然在之前的學習中,學生已經認識到了電壓是形成電流的原因。同時也認識到了導體對電流有阻礙作用,也即是導體存在電阻這樣的觀念。但是放到歐姆定律的學習中,尤其是對公式R=U/I的理解上,學生容易認為電阻與電壓成正比,電阻與電流成反比,也就是認為電壓和電流的大小會改變電阻的大小。學生會單純從數學的角度來理解物理公式,而不能把握三者之間的因果關系。也就是電流變化引起了電阻變化還是電阻變化引起了電流變化?這也是我們之前做實驗的過程中,讓學生分析的根本目的。教師應該要進行提問,由學生來思考變形公式的意義,可以培養學生的邏輯思維能力。對于物理規律的理解,要引導學生理解規律所反映的邏輯關系。

4. 對于歐姆定律內容的學習要注意抓住關鍵字詞,培養學生閱讀能力

篇(6)

About linear, nonlinear element and pure resistance, impure resistor’s discussion

Zhang Feng

【Abstract】Linear, the mis alignment and the pure resistance, the impure resistor’s concept is separately from two different angles the classification which carries on to the electricity component, between them not direct relation.

【Key words】Linear element; Nonlinear element; Pure resistance; Impure resistor; Ohm’s law

在歐姆定律一章的教學過程中常常會遇到有些資料或者一線教學的教師,對線性、非線性元件及純電阻、非純電阻元件和歐姆定律的適用關系出現一些概念上的混亂。所以在此我們就這個問題做一些專門的討論。

人們對通過導體的電流與電壓關系的實驗研究中,發現溫度變化不大時,常見的金屬導體中所通過的電流與其兩端所加的電壓是成正比的,即電壓與電流的比值是確定的;而對不同的金屬導體這個比值是不同的。看來電壓與電流的比值可以反映導體本身的一種性質,于是物理學中將其比值定義為導體的電阻。但是在后來的研究中發現也有一些導體所通過的電流與加在其兩端的電壓并不成正比,于是人們把電壓與電流成正比的導體材料叫做線性元件(伏安特性曲線是直線),而把不成正比的導體材料叫做非線性元件。實驗表明常見的線性元件除金屬外還有電解質溶液。而常見的氣態導體、半導體材料都是非線性元件。

我們知道物理學中的歐姆定律是實驗定律,其內容表述是:導體中的電流跟導體兩端的電壓成正比,而跟導體的電阻成反比。這是由于歐姆當初實驗是用常見的金屬導體來做實驗所得出的該結論。由此看來歐姆定律是只對線性元件而言的,或者說歐姆定律的適用范圍只是線性元件。需要注意的是I=U/R這個公式對非線性元件仍然是成立的,對非線性元件I=U/R是在某一個工作狀態下所對應的數學關系。

人們對用電器工作中能量轉化問題的研究中,注意到有一類用電器所消耗的電能是全部轉化為內能的,即電流做功用來全部產生焦耳熱。所以電流所做的功W=UIt和焦耳實驗定律中得到的電熱Q=IR2t二者是相等的,即UIt=IR2t。化簡得到U/I=R,可以理解為這種用電器對電流的阻礙作用全部來自于電阻,所以這種用電器被稱之為純電阻元件。相反,有些用電器所消耗的電能并沒有全部轉化為內能,即電流所做的功是大于所產生的焦耳熱的,由UIt>IR2t可化簡得到U/I>R,可以理解為這種用電器對電流的阻礙作用不純粹來自于電阻而是還有其它的阻礙作用(將來可由反電動勢、感抗、容抗等概念予以解釋),所以這種用電器被稱之為非純電阻元件。

所以對純電阻元件,其電壓、電流、電阻之間還是具有等量關系的,U/I=R I=U/R U=IR都是成立的。而對非純電阻元件因為U/I>R,所以I,U,R之間也就不再具有等量關系了。

總之,線性、非線性元件與純電阻、非純電阻元件的概念是分別從兩個不同的角度對電學元器件所進行的分類,他們之間無直接的聯系。純電阻元件可能是線性的也可能是非線性的,而對非純電阻元件則通常都是非線性的,當然從概念上講也不排除將來會發現或人為合成出線性的非純電阻元件。非線性元件不適用于歐姆定律是由于電流與電壓不成正比;非純電阻元件不適用于歐姆定律則是對電流的阻礙作用不僅有電阻還有感抗或容抗等作用,所以U/I>R。

下面我們來看兩個涉及線性、非線性元件與純電阻、非純電阻元件的電學問題;

例題1. 要描繪某電學元件(最大電流不超過6 mA,最大電壓不超過7 V)的伏安特性曲線,設計電路如圖1-1所示。圖中定值電阻R為1 kΩ,用于限流;電流表量程為10 mA,內阻約為5 Ω;電壓表(未畫出)量程為10 V,內阻約為10 kΩ;電源電動勢E為12V,內阻不計。

(1)實驗時有兩個滑動變阻器可供選擇:

a.阻值0~200 Ω,額定電流0.3 A

b.阻值0~20 Ω,額定電流0.5 A

本實驗應選用的滑動變阻器是(填“a”或“b”)。

(2)正確接線后,測得數據如下表:

a. 根據以上數據,電壓表是并聯在M與(填“O”或“P”)之間的。 b.根據以上數據,在圖1-2中畫出該元件的伏安特性曲線。

(3)畫出待測元件兩端電壓UMO隨MN間電壓UMN變化的示意圖(無需數值)。

【答案】(1)a (2)a. P b.見解析中圖1-4

(3)見解析中圖1-5

【解析】(1)由于電源內阻不計,所以若使用變阻器b時,流過其電阻絲的電流(觸頭右側部分)I>12/20 A=0.6 A>0.5 A,會燒毀變阻器,故只能用變阻器a。 (2)a. 由題表格數據知,被測元件的電阻R=U/I在不同電壓下都在1 kΩ以上,與電壓表內阻很接近,故為減小實驗誤差,電流表應采用內接法,即電壓表應接在M與P兩點之間。b. 以縱軸表示電流,以橫軸表示電壓建立坐標系,在縱軸上以5小格(1大格)表示1 mA,在橫軸上以5小格(1大格)表示1 V,將表格中各組數據對應的點描繪在坐標系中,然后用平滑的曲線將描出的各點連接起來,即得伏安特性曲線。 (3)UMO隨MN間電壓UMN的變化如圖1-5所示。

例題2 抽油煙機是現代廚衛不可缺少的用具,下表是“惠康牌”家用抽油煙機說明書中的主要技術參數表.用多用表測量得兩只電動機的線圈電阻均為R=90 Ω.若保險絲的熔斷電流是保險絲允許通過的電流的1.5倍,啟動時電動機當作純電阻處理,則

(1)這種抽油煙機保險絲的熔斷電流不得低于多少?

(2)兩電動機每分鐘消耗的電能為多少?

(3)兩電動機每分鐘所做的有用功是多少?

(4)這種油煙機的機械效率是多少?

思維引導 電動機啟動過程和工作過程有何不同?啟動過程中電功的作用是什么?工作過程中電功分為幾部分?電動機的有用功部分是做什么工作?效率的計算方法是什么?

解析 (1)電動機啟動時通過的電流大于正常工作時的電流,所以保險絲的熔斷電流應以啟動時通過的電流來確定.I=UR×2+P燈U=5.1 A.所以保險絲的熔斷電流至少:I′=1.5I=7.7 A.

(2)兩電動機每分鐘消耗的電能E=2Pt=22 200 J

(3)電動機所做的有用功是用于排風的,故兩電動機每分鐘所做的有用功為:

W=PΔV=300×15 J=4 500 J

篇(7)

關鍵詞:歐姆定律;教學設計;傳感器;DIS 線性元件;非線性元件;伏安特性;屏幕廣播

中圖分類號:G633.7 文獻標識碼:A 文章編號:1003-6148(2015)6-0073-6

1 教學內容分析

(1)教材分析:“人教版”高中物理(選修3-1)第二章《恒定電流》中的第3節《歐姆定律》,教材首先回顧了初中學過的電阻的定義式及歐姆定律,然后重點闡述了導體的伏安特性,并分別描繪了小燈泡、半導體二極管的伏安特性曲線,對比了它們的導電性能。

(2)《課程標準》要求:①觀察并嘗試識別常見的電路元器件,初步了解它們在電路中的作用;②分別描繪電爐絲、小燈泡、半導體二極管的I-U特性曲線,對比它們導電性能的特點。

2 教學對象分析

(1)學生在初中已經學習過的電阻的測量、電壓的調節等電路的相關基礎知識,為本節實驗方案設計打下了基礎;

(2)初中已經學習過的歐姆定律基礎知識,為歐姆定律的深化理解起了鋪墊作用;

(3)學生具備了一定的探究能力、邏輯思維能力和歸納演繹能力。

3 教學目標

3.1 知識與技能

(1)了解線性元件及其特點;

(2)理解歐姆定律及其適用條件;

(3)了解非線性元件及其特點。

3.2 過程與方法

(1)通過親歷“導體伏安特性曲線”描繪的全過程,進一步熟知科學探究的各環節;

(2)通過描繪導體伏安特性曲線,體會圖線法在物理學中的作用;

(3)初步掌握傳感器、DIS(數字化信息系統)的操作和使用方法。

3.3 情感態度與價值觀

(1)通過使用傳感器和DIS(數字化信息系統),增強數字化、信息化科學意識;

(2)通過與同學的討論、交流、合作,提高學生主動與他人合作的意識;

(3)通過多媒體教學網絡廣播系統共享實驗結果,享受分享和成功帶來的喜悅、提高學生合作共享意識。

4 教學重點

(1)線性元件與歐姆定律

(2)線性伏安特性曲線的理解與應用

5 教學難點

(1)實驗方案的設計與電路連接、DIS(數字化信息系統)的使用;

(2)非線性伏安特性曲線的理解與應用。

6 教學策略設計

6.1 《課程標準》要求

(1)觀察并嘗試識別常見的電路元器件,初步了解它們在電路中的作用;

(2)分別描繪電爐絲、小燈泡、半導體二極管的I-U特性曲線,對比它們導電性能的特點。

這是采用傳統的教學手段一課時不可能實現的教學目標!而采用傳感器和DIS(數字化信息系統)獲取導體的伏安特性曲線,利用現代化信息技術,不僅大大提高了課堂教學效率,而且增強了學生數字化、信息化科學意識。

6.2 本節課設計了四個探究環節

(1)探究環節一:描繪金屬導體(合金絲繞成的5 Ω、10 Ω電阻)伏安特性曲線

該環節包括實驗設計、電路連接、數據收集、數據的圖線法處理,得出金屬導體的伏安特性曲線是“過原點的直線”的實驗結論。其中,包含了科學探究的“提出問題、設計實驗、數據收集、分析論證、結論評估”諸多環節,使學生進一步熟知科學探究的各環節。

(2)探究環節二:線性元件與歐姆定律

(3)探究環節三:描繪小燈泡(二極管)的伏安特性曲線

(4)探究環節四:非線性元件與非線性伏安特性曲線的理解與應用

其中,環節一、三均采用兩組差異化的實驗器材――合金絲繞成的5 Ω與10 Ω電阻,小燈泡與二極管。這樣設計,既提高了實驗效率,又使實驗具有了普遍性。而通過尋找兩組不同曲線的異同,又能自然總結出線性元件、非線性元件的概念和特點。

6.3 本節課采用小組合作形式

使學生通過與同學的討論、交流、合作,提高學生主動與他人合作的意識;通過多媒體教學網絡廣播系統共享實驗結果,享受分享和成功帶來的喜悅,提高學生合作共享意識。

7 教學設備

25組描繪導體伏安特性曲線器材、“友高”數字化實驗系統、多媒體教學網絡廣播系統、多媒體課件展示、實物投影儀、半波全波整流、濾波線路板。

8 教學過程

引入新課

【教師】

實物投影:整流、濾波線路板,介紹元件、功能。

引入課題:該線路板為何能實現如此神奇的功能呢?那就要求設計者對各元件的性能非常了解,而導體的伏安特性就是其中一項重要的性能。

【學生】

觀察、思索、好奇、興奮。

【設計說明】

激發學生研究導體伏安特性的興趣。

新課教學

探究環節一:描繪金屬導體伏安特性曲線

(一)提出問題

【教師】

(1)今天我們就首先探究金屬導體(合金絲繞成的5 Ω、10 Ω電阻)的伏安特性。

(2)劃分四個研究小組,每組六臺電腦。

【學生】

熟悉小組成員,選出小組長。

【設計說明】

小組合作。

(二)設計實驗

(1)方案設計

【教師】

導體的伏安特性曲線――用橫軸表示電壓U,縱軸表示電流I,畫出的I-U圖線叫做導體的伏安特性曲線。

注意解決三個問題:

①如何測量導體的電流、電壓?

②如何改變導體的電流、電壓?

③怎樣描繪導體的伏安特性曲線?

【學生】

分組討論:

①達到實驗目的所需的實驗器材;

②畫出實驗電路圖、概述實驗方案。

【設計說明】

①提高學生的實驗設計能力;

②利用學生在初中已經學習過的電阻的測量、電壓的調節等電路的相關基礎知識。

(2)方案論證

【學生】

小組長說明實驗器材。

【教師】

展示實驗器材實物圖(圖1)。

【學生】

小組長投影實驗電路、簡述實驗方案。

【教師】

展示實驗電路(圖2)。

(3)方案改進

【教師】

在數字化時代,我們利用電壓傳感器、電流傳感器替代電壓表、電流表,利用“友高”數字化實驗系統替代手工記錄和坐標紙來完成此實驗探究(圖3)。

【學生】

閱讀《描繪導體伏安特性曲線》操作指南。

【設計說明】

采用傳感器和DIS,提高效率,完成傳統實驗器材不可能完成的任務。

(三)數據收集

(1)分組實驗

【學生】

分組實驗:1、2組10 Ω電阻;3、4組5 Ω電阻,同組成員相互協作。

【教師】

①指導學生打開軟件、實驗模板、傳感器調零,按操作指南要求收集數據、保存實驗,暫不關閉等待分享實驗數據(圖4)。

②巡回指導。

④利用多媒體網絡廣播系統了解各組實驗進度情況。

(2)成果分享

【教師】

通過廣播系統向全體同學展示4個小組的實驗結果。

【學生】

觀察、對比。

【設計說明】

采用兩組差異化的實驗器材,既提高了實驗效率,又使實驗具有了普遍性。而通過尋找兩組不同圖線的異同,又能自然總結出線性元件的概念。

(四)結論評估

【教師】

請分析兩圖線的異同。

【學生】

(1)兩圖線均為過原點的直線――線性元件。

(2)兩圖線的斜率不同――電阻值不相等。

探究環節二:線性元件與歐姆定律

(一)線性元件

【教師】

(1)金屬導體的伏安特性曲線是通過坐標原點的直線,具有這種伏安特性的元件稱為線性元件。

那么,線性元件有什么特點呢?

【學生】

觀察、思考后回答。

(2)通過同一線性元件的電流強度與加在導體兩端的電壓成正比。

【教師】

展示兩個電阻的伏安特性曲線(圖5)。

【學生】

觀察、思考后回答。

(3)電壓一定時,通過導體的電流強度與導體本身的電阻成反比。

【教師】

線性元件這兩大特點你聯想到哪條規律?

【學生】

齊答:歐姆定律。

【設計說明】

線性元件與歐姆定律兩知識點自然銜接。

(二)歐姆定律

【教師】

內容:通過導體的電流強度跟加在導體兩端的電壓成正比,跟導體本身的電阻成反比。

適用范圍線性元件金屬導體電解液純電阻電路

【學生】

回顧、歸納。

【教師】

情感教育:介紹歐姆及其實驗裝置(圖6),闡述原創性實驗的開拓性及對科學發展的重大影響!

【學生】

好奇、興奮。

探究環節三:描繪二極管小燈泡伏安特性曲線

(一)提出問題

【教師】

下面我們分四小組、兩大組分別描繪二極管和小燈泡的伏安特性曲線。

【學生】

更換器材、連接電路(圖7)。

(二)數據收集

(1)分組實驗

【學生】

分組實驗:1、2組二極管;3、4組小燈泡,同組成員相互協作。

【教師】

①指導學生打開軟件、實驗模板、傳感器調零,按操作指南要求收集數據、保存實驗,暫不關閉等待分享實驗數據。

②巡回指導。

③利用多媒體網絡廣播系統了解各組實驗進度情況。

(2)成果分享

【教師】

通過廣播系統向全體同學展示4個小組實驗結果。

【學生】

觀察、對比。

【設計說明】

采用兩組差異化的實驗器材,提高了實驗效率,而通過尋找兩組不同圖線的異同,又能自然總結出非線性元件的概念。

(三)結論評估

【教師】

請分析兩圖線的異同(圖8)。

【學生】

(1)兩圖線均為曲線――二極管為非線性元件。

(2)兩圖線的彎曲方向不同――二極管的電阻隨電壓升高而減小;鎢絲的電阻隨電壓升高而增大。

(四)知識點辨析

【教師】

鎢絲(小燈泡燈絲)屬于金屬導體,但其伏安特性曲線為何呈現曲線?(圖9)

【學生】

因為燈絲溫度變化范圍過大。

【教師】

動畫:手工繪制鎢絲伏安特性曲線。

可以看出:曲線起始端溫度變化很小,呈現線性。

探究環節四:非線性元件

(一)非線性元件的概念

【教師】

(1)氣態導體和二極管的伏安特性曲線不是直線,這種元件稱為非線性元件。

(2)對非線性元件,歐姆定律不適用。

(3)非線性元件的電阻除了由材料本身決定外,還與加在其兩端的電壓有關。

【學生】

觀察、思考。

【設計說明】

實驗與知識點自然銜接。

(二)非線性伏安曲線的理解與應用

(1)跟蹤練習――非線性伏安曲線的理解

【教師】

①小燈泡通電后其電流I隨所加電壓U變化的圖線如圖10所示,P為圖線上一點,PN為圖線在P點的切線,PQ為U軸的垂線,PM為I軸的垂線,則下列說法中正確的是( )

(2)拓展練習――非線性伏安曲線的應用

【教師】

②一小燈泡的伏安特性曲線如圖11所示,將該燈泡與一個R=6 Ω的定值電阻串聯,接入輸出電壓U=3 V的恒壓電源,如圖12所示,試求通過小燈泡的電流強度。

【學生】

解析:在小燈泡的伏安特性曲線中做出U=3-6I 的圖線(圖13)。

從兩圖線的交點求出通過小燈泡的電流強度為I = 0.22 A。

【設計說明】

拓展學生解題思路,增強學生圖線法解決問題的意識!

課堂小結

【教師】

引導學生回顧、歸納總結。

知識小結:線性元件、歐姆定律、非線性元件。

方法小結:實驗探究、圖線法、數字化。

【設計說明】

比知識更重要的是方法!

作業布置

【教師】

(1)課本P48頁2、3、4題。

(2)請你設計一套描繪二極管完整伏安特性曲線(含正、反向電壓)的方案。

(3)網上查閱歐姆定律的發現歷程。

【設計說明】

三道作業分別對應“知識與技能、過程與方法、情感態度與價值觀”三維目標。

參考文獻:

篇(8)

我今天要說的類比教學法應屬于講授法中的一種常用方法,講授法的特點就是通過教師的語言,適當輔以其他手段(利用實物、掛圖、類比、演示實驗等),使學生掌握知識,啟發學生思維,發展學生能力。講授法要求物理教師通過各種直觀演示,或以生動形象的事例喚起學生已有的感性認識,系統地講解物理知識,揭示事物的矛盾,講解問題的關鍵、要害,教給學生處理問題的方法,引導學生積極思考,學會掌握物理知識的特點。類比的教學法就是把學生不容易理解的問題通過類比后變得容易理解,把學生容易混淆的知識點通過類比變得清晰,把學生難于記憶的知識通過類比后變得容易記憶,通過比較、分析、綜合、概括、推理等思維過程和形式,把科學的客觀性、邏輯性與一些藝術手法結合起來,使學生在學習知識的過程中,掌握發現問題、處理問題、解決問題的方法,從而發展學生分析問題和解決問題的能力。

在中學物理的教學中,能夠應用類比方法教學的地方很多,如講靜電力學的問題時,我們就可以用類比的方法,通過學生已知的“重力勢能”來類比“電勢能”。在重力場中,物體因受重力作用而相對于某點(參考點)具有重力勢能,而在電場中,電荷因受電場力作用而相對于某點(參考點)具有電勢能;在重力場中,物體在重力作用下從高處向低處移動時,重力做功,對同一物體,高度差越大,重力做功越多。與此類似,電荷在電場中移動時,電場力做功,同一個電荷從一點移動到另一點時,電場力做功越多,就說這兩點間的電勢差越大,從而講清楚“電勢差”(即電壓)的概念;另外,說“電勢”和說“高度”一樣,得選一個高度的起點,即電勢零點和高度的起點是可類比的,選好高度的起點就可以測量物體的高度了,如選海平面為高度的起點,就可以測量各地的海拔高度,選人的腳底為高度的起點就可以測量人的身高等等,同理,選了電勢零點即可用電勢差(電壓)測量電場中各點電勢的高低了。

在學生剛接觸“電壓”這一概念時是比較抽象和難于理解的,電壓即“電位差”,如果用“水位差”來類比不就可以把抽象的問題變得形象化了嗎?,以U形管為例,當兩端水位高度一致時,U形管中的水是不會流動的,只有當兩端的水位高度不一致時,即有水位差時,U形管中的水才會流動,且水流方向是從高水位端流向低水位端。同理,在電路中,沒有電位差就不會形成電流,在電阻電路中,電流方向也總是從高電位端流向低電位端;在特殊情況下,水流可以從低水位端流向高水位端,如抽水機抽水時,那是外力對水做了功。類似的,電流也可以從低電位端流向高電位端,如電源內部,那是非靜電力做功的結果。相似嗎?

在講庫侖定律時,我們常把萬有引力定律拿來對比講解,因為庫侖定律的公式和萬有引力的公式真是有著驚人的相似,庫侖力和萬有引力的大小都與兩個物體之間距離的二次方成反比,與兩個物體的質量或電荷量的乘積成正比,力的方向都在兩個物體的連線上。利用這種相似性的類比,可以使學生更好地記住這兩個公式,這種相似性也可以啟發人們思考這樣的問題:庫侖力和萬有引力之間有沒有內在聯系?從更深層次上看,會不會是同一種相互作用的不同的表現呢?從而激發學生的求知欲。

在講到磁路歐姆定律時,我們往往用電路歐姆定律來類比,因為磁路和電路也有很多相似之處,如電路有電阻,磁路有磁阻;電路有電動勢,磁路有磁動勢;電路有電流,磁路有磁通;電路中的電流跟電動勢成正比,而磁路中的磁通跟磁動勢成正比;電路中電流跟電阻成反比,而磁路中磁通跟磁阻成反比;磁路歐姆定律的數學表達式為:磁通=磁動勢?M磁阻。電路歐姆定律:電流=電動勢?M電阻。可見他們非常相似,故教學時宜采用類比的方法進行教學。

篇(9)

學生理解能力的形成,是個循序漸進的過程,是從不自覺到有目的地自覺進行的.在初中兩年的物理教學中,老師對學生的理解能力要有正確的預估,備課時設計的教學過程要在學生理解能力的“最近發展區”,不可過高也不能過于低,才可能實現真正意義上的高效課堂.

理解是一種積極思維活動的心理過程,理解能力是認識物理現象的前提.相對其他科目來說,很多同學反映物理比較難學難懂.往往上課聽了,概念公式也背了,類似的題目練了,到解決實際問題時還是腦子一片模糊,究其原因主要是理解能力不足,沒有弄清事物的意義,影響了他們的學習效果.主要存在的問題有:(1)實驗教學中的問題.對實驗探究不能明確探究目的,不會設計實驗與制定計劃;(2)概念教學中的問題.不能從物理現象和實驗中歸納科學規律,對同一概念的幾種表達形式鑒別能力差;(3)規律教學中的問題.不理解物理規律的確切內涵和外延,包含其適用條件及在簡單情況下的應用.以上這些問題的存在直接影響著教學質量的提高.

2培養學生理解能力的三點方法

2.1在物理實驗教學中培養學生的理解能力

在進行實驗探究時,可以設置問題串引導學生的思維.問題設計是很重要的一個教學技巧,教師可以通過問題來引導、促進學生思維過程.教師務必注意引導學生思考探究目的是什么,如何進行設計實驗與制定計劃,應該準備哪些實驗器材?哪些物理量需要測[HJ1.9mm]量?筆者相信學生經過多次訓練,在主動尋求途徑解決問題時才理解了整個實驗.否則,學生們要么不知道要做什么,要么就是被動地記錄一堆數據而已.

例1[HT]探究“物質吸熱或放熱規律”的實驗教學時,設置問題串引導學生的思維.

(1)探究的問題是物質吸熱與物質的種類、物質溫度的變化、物質質量的關系,要采用什么方法研究?

(2)設計實驗以前,先要解決一個問題,就是怎樣比較物質吸熱的多少?物質要吸熱,必須要給它加熱,加熱越多,則物質吸熱就越多.加熱的多少怎樣比較?

(3)利用生活經驗說明物質吸熱的多少與溫度變化、質量有什么關系?物質吸熱與物質的種類有什么關系?怎樣設計實驗探究?引導學生答出取相同質量的水和煤油,升高相同的溫度,比較吸熱的多少.(同時師生共同設計表格)

(4)更進一步地,提問取相同質量的水和煤油,加熱相同的時間,比較升高的溫度,可以嗎?思維上清楚了,學生實施觀察和思考就有效了很多.

2.2在物理概念教學中培養學生的理解能力

循序漸進地要求學生從物理現象和實驗數據中歸納科學規律,敢于表達并對同一規律進行不同形式的表達,通過實驗與思維過程的結合提升理解能力.想讓學生主動建構獲得概念,應該注重概念的來龍去脈:為什么要研究這個問題,怎樣進行研究,通過研究得到怎樣的結論,物理量的物理意義是什么以及這個物理量有什么重要的應用等.

例2[HT]密度這個概念的建立是重點也是難點,初二新授課時學生能直觀地體會到體積相同的不同物質質量不同.但是傳統的講授式教學直接用“比值法”定義密度概念,初中生接受起來會有一定的難度.要體現以教師為主導學生為主體的課改理念,就要引導學生對各組實驗數據討論,去發現“同一物質的體積增大幾倍,它的質量也增大幾倍”,“同種物質的質量和體積比值一定”,“物質的質量和體積成正比”,“不同種類的物質,質量跟體積的比值是不同的”,進一步引導學生用圖像法處理數據畫出[TP2CW01.TIF,Y#]如圖1所示的m-V圖像.雖然各抒己見,但教師務必給予每個人及時表揚.師生進一步共同總結,區別物質的一種辦法:質量跟體積的比值.可見單位體積的質量反映了物質的一種特性,密度就是表示這種特性的物理量.學生通過體驗理解物理方法,對于學習后續物[HJ1.85mm]理知識具有很好的遷移價值.

2.3在物理規律教學中培養學生的理解能力

利用圖示法能形象地表達物理規律,直觀地敘述物理過程,鮮明地表示各物理量之間的關系,幫助學生弄清物理條件過程,把握概念條件.理解物理規律[JP2]的確切含義,包含其適用條件及在簡單情況下的應用.

篇(10)

一、物理現象觀察法物理學是以實驗為基礎的科學,初中物理要求學生具有的觀察能力主要是:有目的地觀察,明了觀察對象的主要特征及其變化的條件。觀察物理現象應該做到:

1.激發主動性

學生應激發自己對物理現象觀察和學習物理知識的興趣,主動性和自覺性,助力物理意識。

2.明確觀察目的

要明確具體的觀察目的,觀察中心,觀察條件和范圍。

3.準確記錄

觀察時,要準確記錄物理現象的發生、發展和終結全結論,寫出觀察報告。

二、物理實驗法物理學是一門以實驗為基礎的科學。物理實驗不僅要了解它提供的實驗結果,更重要的是掌握實驗的構思方法和研究物理問題的思路。物理實驗可分為;觀察實驗、驗證實驗、探索性實驗、模擬實驗和思想實驗等。實驗學習應該注意:

1 .樹立嚴謹的科學態度

要一絲不茍地進行實驗,實事求是地記錄,不放過任何一個現象變化和細節。

2.構思方法技巧

實驗構思的主要方法有:(1)放大與擴展;(2)間接觀察后再作推論;(3)模擬類比(4)思想實驗(理想實驗) 如:伽俐略的斜面實驗中,在水平面上依次鋪上毛巾、棉布、木板、玻璃板,測量其小車滑行的距離,再得出結論:平而越光滑,小車運動的距離越遠;根據實驗事實推理;若平面完全光滑,小車將運動到無窮遠,即一直運動下去不會停下來,由此總結出“慣性定律”。

3.實驗要求

進行物理實驗時,要了解物理實驗的目的,會正常使用儀器,會作必要的記錄,會根據實驗結果得出結論,會寫簡單的實驗報告和進行簡單的誤差分析。

三、物理概念學習法一個物理概念,它是某類型物理現象的概括;是物理知識的核心內容之一。學習物理概念應該注意:

1.歸納概括

就是將物理進行分類比較,將同一類型的物理現象的共性找出來,概括并能說明這一類型的物理現象的本質特征。例如;“質量”概念,各個物體的物質組成不同,但“物體所含物質的多少”就是物體的共性,即質量,與物體的形狀,所處的狀態,地理位置和溫度無關。

2.實例聯系

抽象概念的理解是困難的,如果把“概念”放在實例中去記憶,去理解,就要簡單得多,也就要容易區分相關因素和無關因素,找出共同特征。如“蒸發”概念,對應水在任何溫度下都能蒸發,且需吸熱,就能夠很快地對“蒸發”概念理解透徹。

3.內涵與外延

不能將物理概念任意外推,如果這樣就會導致概念與事實不相容的矛盾。例如:“慣性”這個概念,它說明一切物體都具有的保持其原來的運動狀態性質,物質運動靜止,不是因為物體是否受力,而是物體具有“慣性”。受力與否,是決定物體運動狀態變化與否的必要條件。兩千多年前,古希臘科學家亞里斯多德認為:“力是維持物體運動的原因”,他之所以錯誤,就是沒有概括出物體運動的本質特征。

四、物理定律學習法物理概念和物理規律是物理知識的核心內容,是物理課中的基礎知識,物理定律是通過歸納大量事實和實驗中認識的客觀規律后形成的科學結論。如牛頓第一定律、歐姆定律、焦耳定律、阿基米德原理等。學習物理定律應該注意:

1.準確理解物理定律的物理意義

知道物理定律的內容,理解其實質,能用準確的語言表述,能聯想一個實例。

2.明確物理定律的適用條件

物理定律是客觀規律的總結,但它并不一定在任何條件下都成立。因此,不能忽視物理定律所適用的范圍和條件。如:熱平衡方程“Q吸=Q放”的成立條件是:系統與外界無熱交換。若系統與外界有熱交換,則只能在不計一切熱損失的條件下才能成立。

3.弄清各物理量間的相互聯系

弄清各物理量間的相互聯系,透徹理解各概念;知道定律的建立(或帳號)過程,重視各部分知識間的聯系,把前后概念連貫起來,從而使知識系統化、條理化。

4.建立物理定律所對應的模型

對每一個物理定律,都應記住它所對應的模型或典型范例。要了解它的研究對象,研究對象的運動狀態等。如:“反射定律”的典型范例是平面鏡成像。

5.記住物理定律所對應的典型實驗

物理定律的基礎是物理實驗,應將物理定律與相應的典型實驗對應起來,有利于對物理定律的理解和深化。如:“阿基米德原理”所對應的典型實驗就是“排液法”測浮力,“歐姆定律”所對應的典型實例就是研究“電壓與電流強度的關系”實驗。

五、物理公式學習法物理公式(含物理定律的數學表達式)是物理學成熟的重要標志.從定性到定量的研究,使物理現象從經驗升華到科學。物理公式一般可分為三大類:

1.定義式

它是對一類問題的概括性表達式。表示某一物理概念的意義。使用這類公式,不能簡單地從數學角度看,而應透過數學表達式這個現象,去領會它的物理實質。如密度p=m/V,絕不能認為密度與質量M成正比,與體積V成反比,密度是物質自身的特性,由物質的種類決定,與物體的質量和體積無關。同理,電阻的定義R=U/I也是如此,電阻R由組成電阻的材料、長度、橫截面積來決定。

2.物理定律、規律、原理表達式

它揭示了這一類物理現象在運動變化過程中所遵循的法則,使用時,要特別注意這類表達式的運用范圍和條件。例如:液體壓強公式P=≥gh,它表達了液體在內部各處產生的壓強所遵循的規律,它的適用范圍是:靜止液體,應特別注意的是,h是從液體上表面往卜測量的深度,而不是通常意義上所說的高度。

上一篇: 簡述健康教育的目的和意義 下一篇: 高校思想政治教育的重要性
相關精選
久久久噜噜噜久久中文,精品五月精品婷婷,久久精品国产自清天天线,久久国产一区视频
久久综合亚洲色社区 | 亚洲精品日产精品乱码不卡 | 婷婷六月在线视频中文字幕 | 午夜爽爽爽男女免费观看麻豆国产 | 久久精品亚洲人成影院 | 视频电影免费久久 |