數學思想論文匯總十篇

時間:2023-03-23 15:02:50

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇數學思想論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

數學思想論文

篇(1)

縱觀數學教學的現狀,應該看到,應試教育向素質教育轉軌的過程中,確實有很多弄潮兒站到了波峰浪尖,但也仍有一些數學課基本上還是在應試教育的慣性下運行,對素質教育只是形式上的“搖旗吶喊”,而行動上卻留戀應試教育“按兵不動”,缺乏戰略眼光,因而至今仍被困惑在無邊的題海之中。

究竟如何走出題海,擺脫那種勞民傷財的大運動量的機械訓練呢?我們認為:堅持滲透數學思想和方法,更新教育觀念是根本。要充分發掘教材中的知識點和典型例題中所蘊含的數學思想和方法,依靠數學思想指導數學思維,盡量暴露思維的全過程,展示數學方法的運用,大膽探索,會一題明一路,以少勝多,這才是走出題海誤區,真正實現教育轉軌的新途徑。

二、明確數學思想和方法的豐富內涵

所謂數學思想就是對數學知識和方法的本質及規律的理性認識,它是數學思維的結晶和概括,是解決數學問題的靈魂和根本策略。而數學方法則是數學思想的具體表現形式,是實現數學思想的手段和重要工具。數學思想和數學方法之間歷來就沒有嚴格的界限,只是在操作和運用過程中根據其特征和傾向性,分為數學思想和數學方法。一般說來,數學思想帶有理論特征,如符號化思想,集合對應思想,轉化思想等。而數學方法則具有實踐傾向,如消元法、換元法、配方法、待定系數法等。因此數學思想具有抽象性,數學方法具有操作性。數學思想和數學方法合在一起,稱為數學思想方法。

不同的數學思想和方法并不是彼此孤立,互不聯系的,較低層次的數學思想和方法經過抽象、概括便可以上升為較高層次的數學思想和方法,而較高層次的數學思想和方法則對較低層次的數學思想和方法有著指導意義,其往往是通過較低層次的思想方法來實現自身的運用價值。低層次是高層次的基礎,高層次是低層次的升級。

三、強化滲透意識

在教學過程中,數學的思想和方法應該占有中心的地位,“占有把數學大綱中所有的、為數很多的概念,所有的題目和章節聯結成一個統一的學科的核心地位。”這就是要突出數學思想和方法的滲透,強化滲透意識。這既是數學教學改革的需要,也是新時期素質教育對每一位數學教師提出的新要求。素質教育要求:“不僅要使學生掌握一定的知識技能,而且還要達到領悟數學思想,掌握數學方法,提高數學素養的目的。”而數學思想和方法又常常蘊含于教材之中,這就要求教師在吃透教材的基礎上去領悟隱含于教材的字里行間的數學思想和方法。一方面要明確數學思想和方法是數學素養的重要組成部分,另一方面又需要有一個全新而強烈地滲透數學思想方法的意識。

四、制定滲透目標

依據現行教材內容和教學大綱的要求,制訂不同層次的滲透目標,是保證數學思想和方法滲透的前提。現行教材中數學思想和方法,寓于知識的發生,發展和運用過程之中,而且不是每一種數學思想和方法都能象消元法、換元法、配方法那樣,達到在某一階段就能掌握運用的程度。有的數學思想方法貫穿初等數學的始終,必須分級分層制定目標。以在方程(組)的教學中滲透化歸思想和方法為例,在初一年級時,可讓學生知道在一定條件下把未知轉化為已知,把新知識轉化為已掌握的舊知識來解決的思想和方法;到了初二年級,可根據化歸思想的導向功能,鼓勵學生按一定的模式去探索運用;初三年級,已基本掌握了化歸的思想和方法,并有了一定的運用基礎和經驗,可鼓勵學生大膽開拓,創造運用。實際教學中也確實有一些學生能夠把多種數學思想和方法綜合運用于解決數學問題之中,這種水平正是我們走出題海所迫切需要的,它既是素質教育的要求,也本文的最終目的。

五、遵循滲透原則

我們所講的滲透是把教材中的本身數學思想和方法與數學對象有機地聯系起來,在新舊知識的學習運用中滲透,而不是有意去添加思想方法的內容,更不是片面強調數學思想和方法的概念,其目的是讓學生在潛移默化中去領悟。運用并逐步內化為思維品質。因而滲透中勿必遵循由感性到理性、由抽象到具體、由特殊到一般的滲透原則,使認識過程返樸歸真。讓學生以探索者的姿態出現,在自覺的狀態下,參與知識的形成和規律的揭示過程。那么學生所獲取的就不僅僅是知識,更重要的是在思維探索的過程中領悟、運用、內化了數學的思想和方法。

六、探索并掌握滲透的途徑

數學的思想和方法是數學中最本質、最驚彩、最具有數學價值的東西,在教材中除一些基本的思想和方法外,其它的數學思想和方法都呈隱蔽式,需要教師在數學教學中,乃至數學課外活動中探索選擇適當的途徑進行滲透。

1.在知識的形成過程中滲透

對數學而言,知識的形成過程實際上也是數學思想和方法的發生過程。大綱明確提出:“數學教學,不僅需要教給學生數學知識,而且還要揭示獲取知識的思維過程。”這一思維過程就是思想方法。傳授學生以數學思想,教給學生以數學方法,既是大綱的要求,也是走出題海的需要。因此必須把握教學過程中進行數學思想和方法滲透的契機。如概念的形成過程,結論的推導過程等,都是向學生滲透數學思想和方法,訓練思維,培養能力的極好機會。

2.在問題的解決過程中滲透

數學的思想和方法存在于問題的解決過程中,數學問題的步步轉化無不遵循著數學思想方法的指導。數學的思想和方法在解決數學問題的過程中占有舉足輕重的地位。教學大綱明確指出:“要加強對解題的正確指導,要引導學生從解題的思想和方法上作必要的概括”,這就是新教材的新思想。其實數學問題的解決過程就是用“不變”的數學思想和方法去解決不斷“變換”的數學命題,這既是滲透的目的,也是實現走出題海的重要環節。滲透數學思想和方法,不僅可以加快和優化問題解決的過程,而且還可以達到,會一題而明一路,通一類的效果,打破那種一把鑰匙開一把鎖的呆板模式,擺脫了應試教育下題海戰的束縛。通過滲透,盡量讓學生達到對數學思想和方法內化的境界,提高獨立獲取知識的能力和獨立解決問題的能力,此時的思維無疑具有創造性的品質。如化歸的數學思想是解決問題的一種基本思路,在整個初等方程及其它知識點的教學中,可以反復滲透和運用。

3.在復習小結中滲透

小結和復習是數學教學的重要環節,而應試教育下的數學小結和復習課常常是陷入無邊的題海,使得師生在枯燥的題海中進行著過量而機械的習題訓練,其結果是精疲力盡,茫然四顧,收獲甚少。如何提高小結、復習課的效果呢?我們的做法是:遵循數學大綱的要求。緊扣教材的知識結構,及時滲透相關的數學思想和數學方法。在數學思想的科學指導下,靈活運用數學方法,突破題海戰的模式,優化小結、復習課的教學。在章節小結、復習的數學教學中,我們注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。

篇(2)

“數學思想”作為數學課程論的一個重要概念,我們完全有必要對它的內涵與外延形成較為明確的認識。關于這個概念的內涵,我們認為:數學思想是人們對數學科學研究的本質及規律的理性認識。這種認識的主體是人類歷史上過去、現在以及將來有名與無名的數學家;而認識的客體,則包括數學科學的對象及其特性,研究途徑與方法的特點,研究成就的精神文化價值及對物質世界的實際作用,內部各種成果或結論之間的互相關聯和相互支持的關系等。可見,這些思想是歷代與當代數學家研究成果的結晶,它們蘊涵于數學材料之中,有著豐富的內容。

通常認為數學思想包括方程思想、函數思想、數形結合思想、轉化思想、分類討論思想和公理化思想等。這些都是對數學活動經驗通過概括而獲得的認識成果。既然是認識就會有不同的見解,不同的看法。實際上也確實如此,例如,有人認為中學數學教材可以用集合思想作主線來編寫,有人認為以函數思想貫穿中學數學內容更有利于提高數學教學效果,還有人認為中學數學內容應運用數學結構思想來處理等等。盡管看法各異,但筆者認為,只要是在充分分析、歸納概括數學材料的基礎上來論述數學思想,那么所得的結論總是可能做到并行不悖、互為補充的,總是能在中學數學教材中起到積極的促進作用的。

關于這個概念的外延,從量的方面講有宏觀、中觀和微觀之分。

屬于宏觀的,有數學觀(數學的起源與發展、數學的本能和特征、數學與現實世界的關系),數學在科學中的文化地位,數學方法的認識論、方法論價值等;屬于中觀的,有關于數學內部各個部門之間的分流的原因與結果,各個分支發展過程中積淀下來的內容上的對立與統一的相克相生的關系等;屬于微觀結構的,則包含著對各個分支及各種體系結構定內容和方法的認識,包括對所創立的新概念、新模型、新方法和新理論的認識。

從質的方面說,還可分成表層認識與深層認識、片面認識與完全認識、局部認識與全面認識、孤立認識與整體認識、靜態認識與動態認識、唯心認識與唯物認識、謬誤認識和正確認識等。

二、數學思想的特性和作用

數學思想是在數學的發展史上形成和發展的,它是人類對數學及其研究對象,對數學知識(主要指概念、定理、法則和范例)以及數學方法的本質性的認識。它表現在對數學對象的開拓之中,表現在對數學概念、命題和數學模型的分析與概括之中,還表現在新的數學方法的產生過程中。它具有如下的突出特性和作用。

(一)數學思想凝聚成數學概念和命題,原則和方法

我們知道,不同層次的思想,凝聚成不同層次的數學模型和數學結構,從而構成數學的知識系統與結構。在這個系統與結構中,數學思想起著統帥的作用。

(二)數學思想深刻而概括,富有哲理性

各種各樣的具體的數學思想,是從眾多的具體的個性中抽取出來且對個性具有普遍指導意義的共性。它比某個具體的數學問題(定理法則等)更具有一般性,其概括程度相對較高。現實生活中普遍存在的運動和變化、相輔相成、對立統一等“事實”,都可作為數學思想進行哲學概括的材料,這樣的概括能促使人們形成科學的世界觀和方法論。

(三)數學思想富有創造性

借助于分析與歸納、類比與聯想、猜想與驗證等手段,可以使本來較抽象的結構獲得相對直觀的形象的解釋,能使一些看似無處著手的問題轉化成極具規律的數學模型。從而將一種關系結構變成或映射成另一種關系結構,又可反演回來,于是復雜問題被簡單化了,不能解的問題的解找到了。如將著名的哥尼斯堡七橋問題轉化成一筆畫問題,便是典型的一例。當時,數學家們在作這些探討時是很難的,是零零碎碎的,有時為了一個模型的建立,一種思想的概括,要付出畢生精力才能得到,這使后人能從中得到真知灼見,體會到創造的艱辛,發展頑強奮戰的個性,培養創造的精神。

三、數學思想的教學功能

我國《九年義務教育全日制初級中學數學教學大綱(試用修訂版)》明確指出:“初中數學的基礎知識主要是初中代數、幾何中的概念、法則、性質、公式、公理、定理以及由其內容所反映出來的數學思想和方法”。根據這一要求,在中學數學教學中必須大力加強對數學思想和方法的教學與研究。

(一)數學思想是教材體系的靈魂

從教材的構成體系來看,整個初中數學教材所涉及的數學知識點匯成了數學結構系統的兩條“河流”。一條是由具體的知識點構成的易于被發現的“明河流”,它是構成數學教材的“骨架”;另一條是由數學思想方法構成的具有潛在價值的“暗河流”,它是構成數學教材的“血脈”靈魂。有了這樣的數學思想作靈魂,各種具體的數學知識點才不再成為孤立的、零散的東西。因為數學思想能將“游離”狀態的知識點(塊)凝結成優化的知識結構,有了它,數學概念和命題才能活起來,做到相互緊扣,相互支持,以組成一個有機的整體。可見,數學思想是數學的內在形式,是學生獲得數學知識、發展思維能力的動力和工具。教師在教學中如能抓住數學思想這一主線,便能高屋建瓴,提挈教材進行再創造,才能使教學見效快,收益大。

(二)數學思想是我們進行教學設計的指導思想

筆者認為,數學課堂教學設計應分三個層次進行,這便是宏觀設計、微觀設計和情境設計。無論哪個層次上的設計,其目的都在于為了讓學生“參與”到獲得和發展真理性認識的數學活動過程中去。這種設計不能只是數學認識過程中的“還原”,一定要有數學思想的飛躍和創造。這就是說,一個好的教學設計,應當是歷史上數學思想發生、發展過程的模擬和簡縮。例如初中階段的函數概念,便是概括了變量之間關系的簡縮,也應當是滲透現代數學思想、使用現代手段實現的新的認識過程。又如高中階段的函數概念,便滲透了集合關系的思想,還可以是在現實數學基礎上的概括和延伸,這就需要搞清楚應概括怎樣的共性,如何準確地提出新問題,需要怎樣的新工具和新方法等等。對于這些問題,都需要進行預測和創造,而要順利地完成這一任務,必須依靠數學思想作為指導。有了深刻的數學思想作指導,才能做出智慧熠爍的創新設計來,才能引發起學生的創造性的思維活動來。這樣的教學設計,才能適應瞬息萬變的技術革命的要求。靠一貫如此設計的課堂教學培養出來的人才,方能在21世紀的激烈競爭中立于不敗之地。

(三)數學思想是課堂教學質量的重要保證

數學思想性高的教學設計,是高質量進行教學的基本保證。在數學課堂教學中,教師面對的是幾十個學生,這幾十個智慧的頭腦會提出各種各樣的問題。隨著新技術手段的現代化,學生知識面的拓寬,他們提出的許多問題是教師難以解答的。面對這些活潑肯鉆研的學生所提的問題,教師只有達到一定的思想深度,才能保證準確辨別各種各樣問題的癥結,給出中肯的分析;才能恰當適時地運用類比聯想,給出生動的陳述,把抽象的問題形象化,復雜的問題簡單化;才能敏銳地發現學生的思想火花,找到閃光點并及時加以提煉升華,鼓勵學生大膽地進行創造,把眾多學生牢牢地吸引住,并能積極主動地參與到教學活動中來,真正成為教學過程的主體;也才能使有一定思想的教學設計,真正變成高質量的數學教學活動過程。

篇(3)

數學思想數學論文參考文獻:

[1]范璐璐.解析數學思想、數學活動與小學數學教學[J].中國教育學刊,2014,(06).

[2]姜嫦君,劉靜霞.小學數學教學中數學思想方法的滲透[J].延邊教育學院學報,2010,(02).

[3]鄒益群.試論數學思想、數學活動與小學數學教學[J].才智,2015,(15).

[4]俞元苗.論數學思想、數學活動與小學數學教學[J].才智,2013,(36):104-104.

[5]范璐璐.解析數學思想、數學活動與小學數學教學[J].才智,2014,(6):47-47.

[6]曾國棟.數學思想、數學活動與小學數學教學[J].現代教育科學(普教研究),2014,(6):154-154,116.

[7]鄒益群.試論數學思想、數學活動與小學數學教學[J].才智,2015,(15):169-169.

數學思想數學論文參考文獻:

[1]于芳.小學數學課堂教學的現實性研究[D].湖南師范大學,2012.

[2]朱黎生.指向理解的小學“數與運算”內容的教材編寫策略研究[D].西南大學,2013.

[3]劉勛達.小學數學模型思想及培養策略研究[D].華中師范大學,2013.

[4]張桂芳.小學數學解決問題方法多樣化的研究[D].西南大學,2013.

[5]俞祥龍.分類思想在中職數學中的滲透[J].數學學習與研究,2015(13):16-17.

[6]李祎.高水平數學教學到底該教什么[J].數學教育學報,2014(6).

[7]雷會榮.淺談數學思想在極限教學中的滲透[J].教育探索,2011(12):58-59.

數學思想數學論文參考文獻:

[1]林雪.關于轉化思想方法在高中數學解題中的應用探討[J].中國校外教育,2016,23(13)

[2]韓云霞,馬旭.淺談函數思想在高中數學解題中的應用[J].寧夏師范學院學報,2016,22(3)

篇(4)

如:直線是由無數個點組成的集合,實數包括正實數、零、負實數也有無數個,因為它們的這個共性所以用直線上無數個點來表示實數,這時就把一條直線規定了原點、正方向和單位長度,把這條直線就叫做數軸。建立了數與直線上的點的結合。即:數軸上的每個點都表示一個實數,每個實數都能在數軸上找到表示它的點,建立了實數與數軸上的點的一一對應關系,由此讓學生理解了相反數、絕對值的幾何意義。建立數軸后及時引導學生利用數軸來進行有理數的比較大小,學生通過觀察、分析、歸納總結得出結論:通常規定右邊為正方向時,在數軸上的兩個數,右邊的總大于左邊的,正數大于零,零大于負數。讓學生理解數形結合思想在解決問題中的應用。為下面進一步學習數形結合思想奠定基礎。

-1--,--3---,---6--,----10--,--15----,--21----,---28--,--36---……-----在講解通過形來說明數的找規律問題中應該從形中找數。如第一個圖形有一個小正方形,第二個圖形有三個小正方形,第三個圖形有六個小正方形,那么第四個圖形將有幾個小正方形呢?從前三個中尋找規律,第二個比第一個多兩個小正方形,第三個比第二個多三個小正方形,那么第四個就比第三個多四個小正方形,第四個圖形就有十個小正方形,第五個比第四個多五個小正方形,那么第五個就有十五個小正方形,依次類推,第六個圖形就有二十一個小正方形,第七個圖形就有二十八個小正方形,第八個圖形就有三十六個小正方形。那么上面的橫線上分別填上10、15、21、28、36,第n個圖形就應該有1+2+3+4+5+6……+n=個小正方形。這也體現數形結合的思想。

例2:小明的父母出去散步,從家走了20分到一個離家900米的報亭,母親隨即按原速返回。父親看了10分報紙后,用了15分返回家。你能在下面的平面直角坐標系中畫出表示父親和母親離家的時間和距離之間的關系嗎?

結合探索規律和生活中的實際問題,反復滲透,強化數學中的數形結合思想,使學生逐步形成數學學習中的數形結合的意識。并能在應用數形結合思想的時候注意一些基本原則,如是知形確定數還是知數確定形,在探索規律的過程中應該遵循由特殊到一般的思路進行,從而歸納總結出一般性的結論。

二、學習數形結合思想,增強解決問題的靈活性,提高分析問題、解決問題的能力

在教學中滲透數形結合思想時,應讓學生了解,所謂數形結合就是找準數與形的契合點,根據對象的屬性,將數與形巧妙地結合起來,有效地相互轉化,就成為解決問題的關鍵所在。

數形結合的結合思想主要體現在以下幾種:

(1)用方程、不等式或函數解決有關幾何量的問題;

(2)用幾何圖形或函數圖象解決有關方程或函數的問題;(3)解決一些與函數有關的代數、幾何綜合性問題;

(4)以圖象形式呈現信息的應用性問題。

例1:一個角的補角是這個角余角的3倍,求這個角的度數。

解:設這個角為X0,則它的余角為(900-x0),它的補角為(1800-x0)根據題意得:

1800-x0=3(900-x0)

解這個方程得:x0=450

所以這個角為450

例2:一塊四周鑲有寬度相等的花邊的地毯如圖所示,它的長為8m,寬為5m。如果地毯中央長方形圖案的面積為18m2,那么花邊有多寬?

SHAPE\*MERGEFORMAT

如果設花邊的寬為xm,那么地毯中央長方形圖案的長_(8-2x)_________m,寬為___(_5-2x)________m.根據題意,可得方程

______(8-2x)(5-2x)=18_______。

解這個方程得出x的值

這就是用方程的方法來解決有關幾何圖形的問題

例4:A、B兩地相距150千米,甲、乙兩人騎自行車分別從A、B兩地相向而行。假設他們都保持勻速行駛,則他們各自到A地的距離s(千米)都是騎車時間t(時)的一次函數.

1時后乙距A地120千米,

2時后甲距A地40千米.

問經過多長時間兩人相遇?

[分析]可以分別作出兩人s與t之間的關系圖象,

找出交點的橫坐標就行了。

例5:下圖中L1,L2分別表示B離岸起兩船相對于海岸的距離s與追趕時間t之間的關系。

SHAPE\*MERGEFORMAT

根據圖象回答下列問題:

當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。

SHAPE\*MERGEFORMAT

分析:可先根據圖象給出的信息,確定L1,L2的函數表達式,然后把兩個一次函數表達式組成方程組,解這個方程組就得到了兩條直線的交點坐標,即為所得結論。

解:由圖象知:直線L2過點(0,6)和點(10,8)直線L2過點(0,0)和點(10,6)設直線L1的表達式為s=k1t;直線L2的表達式為s=k2t+b

由以上的幾個例子,我們可以看出數形結合思想的應用往往能使一些錯綜復雜的問題變得直觀,解題思路非常的清晰,步驟非常的明了。另一方面在學生學習過程中,可以激發學生學習數學的興趣。

利用現有教材,教學中著意滲透并力求幫助學生初步掌握數形結合的思想方法,結合其它數學思想方法的學習,注意幾種思想方法的綜合使用,給學生提供足夠的材料和時間,啟發學生積極思維。相信會使學生在認識層次上得到極大的提高,收到事半功倍的教學成效。

論文關鍵詞:思維滲透數學思想方法思維能力契合點創新意識

論文摘要:數學學習離不開思維,數學探索需要通過思維來實現,在初中數學教學中逐步滲透數學思想方法,培養思維能力,形成良好的數學思維習慣,數形結合的思想貫穿初中數學教學的始終。數形結合思想的主要內容體現在以下幾個方面:(1)建立適當的代數模型(主要是方程、不等式或函數模型),(2)建立幾何模型(或函數圖象)解決有關方程和函數的問題。(3)與函數有關的代數、幾何綜合性問題。(4)以圖象形式呈現信息的應用性問題。采用數形結合思想解決問題的關鍵是找準數與形的契合點。如果能將數與形巧妙地結合起來,有效地相互轉化,一些看似無法入手的問題就會迎刃而解,產生事半功倍的效果。

參考文獻:

篇(5)

在維果茨基看來,“最近發展區”對智力發展和成功的進程,比現有水平有更直接的意義。他強調,教學不應該指望于兒童的昨天,而應指望于他的明天。只有走在發展前面的教學,才是好的教學。因為它使兒童的潛在發展水平不斷提高。

依據“最近發展區”的思想,“最近發展區”是教學發展的“最佳期限”,即“發展教學最佳期限”。即,在最佳期限內進行的教學是促進兒童發展最佳的教學。教學應根據“最近發展”。“如果只根據兒童智力發展的現有水平來確定教學目的、任務和組織教學,就是指望于兒童發展的昨天,面向已經完成的發展程”。這樣的教學,從發展意義上說是消極的。它不會促進兒童發展。教學過程只有建立在那些尚未成熟的心理機能上,才能產生潛在水平和現有水平之間的矛盾,而這種矛盾又可引起兒童心理機能間的矛盾,從而推動了兒童的發展。例如,初中一年級負數的教學,學生過去未認識負數。教師可以舉一些具體的、具有相反意義的量。如,可用溫度計測溫度的例子,在零攝氏度以上與在零攝氏度以下的時候的溫度怎樣表示,以吸引學生,使他們渴望找到表示這些量的數。從而解決他們想解決未能解決的問題。這樣的教學過程中的矛盾而引起的心理機能的矛盾,使學生很快掌握了負數的概念,并能運用其解決實際問題。

篇(6)

大學數學是大學本科階段必修的重要的基礎理論課程,對于非數學專業來說,大學數學主要是指高等數學、線性代數和概率論三門課程,當然也包括其他一些工程數學如復變函數、數學物理方程以及計算方法等。長期以來,大學數學的教學一直面臨著內容多、負擔重、枯燥泛味、學生積極性較低等問題。如今我國的高等教育已變成大眾化教育,高校生源質量明顯下降,大學生學習的自覺性、積極性以及努力程度等均在下降,這在一般的本科院校中尤為突出。這也使得大學數學的不及格率急劇上升,有的專業有些班級的不及格率高達50%,20-30%的不及格率更是普遍,補考重修的大軍可謂浩浩蕩蕩,有的甚至畢業了還要回校補考高等數學。教師也是叫苦不迭,一次又一次出題改卷錄分數,工作量一下子就增大不少。很多學生表示自己不是不想學,是沒興趣學,覺得學了又沒什么用,而學習過程又是枯燥的,于是便不想學了。偶然看到一位工科學生學習數學的感言:數學像是一個無底洞,小學時老師給了我一盞煤油燈,領著我進去;中學時煤油燈換成了一盞桐油燈,老師趕著我自己摸索進去;上了大學,我懷抱著工程師、設計師的夢想,滿以為可以領略到數學的用武之地,然而老師告訴我,你現在學的還是基礎,要用沒到時候呢;每天似音樂符的積分號充塞我的頭腦,我沒能譜寫好美妙動聽的交響曲,卻漸漸變成了老油條,夢想就此也遠去了。這雖然只是大學生的只言片語,但從中也能窺視到當代大學生的內心世界。他們渴望學好數學,將數學應用到專業技術中,使他們成為專業技術能手。但是大學數學的教學不能滿足他們的愿望,使得他們在學習的過程中逐漸失去了學習數學的興趣,失去了動力和信心。因此,培養大學生學習數學的興趣至關重要。

一、興趣在大學數學學習中所起的作用

孔子曰“:知之者不如好之者,好之者不如樂之者”。興趣可以讓人從平淡中發現瑰麗,從困頓中崛起。強烈的興趣往往可以像聚焦鏡一樣,將人們的注意力專注于所愛好的事物,吸引人們反復揣摩、鉆研和思考,像一盞指明燈引導人們尋找自己的航向。沒有興趣,就會失去動力。只有學生對數學發生濃厚的興趣,他才會積極主動地去學習它、鉆研它并且應用它。只有這樣,師生的教學活動才會輕松、愉快,并能夠保證良好的教學質量。學習過程中,一旦有了興趣,很多學生就能夠發揮主動性,樂于去思考問題,喜歡提出問題,進而去探究問題的解決方法,也就有了數學思維,有利于培養學生的創新能力。學生是教學過程的主體,只有主體發揮自身主觀能動性,教學活動才能有效地完成,教學質量才會提高。現在的大學生多是獨生子女,家庭生活條件較優越,個性大都特立獨行,缺乏自我約束能力,一遇到挫折就會退縮,做事但憑著自己的喜好和興趣。對自己感興趣的事情執著追求,但是不感興趣的東西,哪怕家長老師天天追著說很重要,他也不會理睬。有些學生第一學期高等數學不及格,問其原因,答曰:不感興趣,逼著我學也沒用。做思想工作的時候,甚至還有學生說:不感興趣,老師你別管我。然后依舊我行我素,其他數學課程的學習也可想而知。任憑輔導員、任課教師以及家長苦口婆心,學生本身沒有興趣,說什么也是無用。學生學習數學的興趣的激發和培養離不開教師的引導,尤其是在大學數學學習上。很多學生對大學數學的作用認識不清,覺得學來無用,何必費力去學。此外,大學數學中復雜枯燥的符號運算、繁瑣的公式推導、一些概念的高度抽象性以及證明過程的嚴密邏輯性也令學生對大學數學望而生畏,從而影響了學習的興趣。這也給廣大的大學數學教師帶來了嚴峻的考驗及挑戰,如何在教學過程中激發和培養學生學習數學的興趣,如何讓學生對大學數學有一個正確的認識,使之能夠主動去學,樂于去學,并能夠樂在其中,這值得好好思考和探究。

二、數學建模可激發大學生學習數學的興趣

現今,數學建模競賽風靡全球高校,數學建模的作用已被大家所認同,特別是對培養學生學習數學的興趣起到重要作用。很多高校的數學教學也逐漸引入數學建模思想進行教學改革創新,激發學生學習數學的興趣,培養學生自主解決問題的能力以及創新能力[1-3]。數學建模是用數學語言來描述和解決實際問題的過程,將實際問題抽象成為數學問題,并應用合理的數學方法進行求解,進而轉化為對現實問題的求解、詮釋和預測等[4,5]。在數學建模培訓過程中,發現有的學生為了解決一個問題,可以抱著數學類參考書津津有味地看上大半天也不會走神。但是,對比高等數學課堂,哪怕是最認真的學生,偶爾還是會走神,不是還會有厭煩的情緒。探究其原因,無非還是一個興趣問題。建模過程,針對一般是實際問題,學生對這個問題感興趣,就會有探究到底的心理,進而就有原動力去尋找解決問題的思路和方法。而課堂學習,大多因為課時原因,教師無法在有限的時間里去詳細介紹每一個知識點的實際應用背景。更確切的說很難與學生所學專業結合,給出數學概念的實際應用背景以及概念的來由,這必將導致課堂教學枯燥乏味,學生自然沒有欲望去學,更不愿主動去學。在課堂教學中,如果能夠充分結合數學建模的思想,將其融入課堂,給枯燥乏味的數學公式、推理過程賦予生命般的活力,特別是能夠結合學生專業背景進行教學,必定能夠激發學生的學習數學的興趣,進而主動探究知識,教師也能夠避免傳統教學中一味注入式“概念———定理———證明———例題———作業———考試”的教學方式。學生能夠從學習中尋找樂趣,獲得成就感,教師也能夠在教學中與學生共同成長進步。數學建模不僅僅培養學生綜合應用數學知識及方法分析、解決問題的能力,也培養了學生的團隊協作能力、交流能力以及語言和文字表達能力,同時也培養了學生的競爭意識。建模時,學生會對實際問題感興趣,當把問題抽象成數學模型時,會有一定的成就感,而成就感會引發更濃的興趣,使得學生在學習過程中能夠充分享受樂趣,自信心也得到加強。

三、數學建模融入教學中的改革思路

數學建模猶如一道數學知識通向實際問題的橋梁,使學生的數學知識與應用能力能夠有效的結合起來。學生參與數學建模活動,感受數學的生命力和魅力,從而激發他們學習數學的興趣,有助于其創新能力的培養。為了將數學建模的思想融入大學數學教學,這里給出幾點改革思路:

(一)大學數學課程每部分內容中安排相關的數學建模教學內容

相關的數學建模教學內容可以是案例式,也可以是實際問題,要充分考慮學生專業背景。教師課前把問題告知學生,課上通過啟發和組織學生討論,引導學生將所學知識運用到解決問題中。例如教學利用積分求不規則物體的體積或質量時,可以在課前給出具體物件(可以根據不同專業來選擇具體物件),讓學生課后自己去尋找解決辦法。教學時可先組織討論學生想出解決辦法,活躍課堂氣氛的同時能夠激發學生學習興趣。

(二)數學建模教學內容引入大學數學教材

目前大部分教材基本上以概念、定理、推證、例題、習題的邏輯順序出現,給出的應用背景多數限于物理應用,同樣缺乏活力和生命力。很多學生往往在預習時,看教材的應用背景時就已經對學習這部分內容失去興趣,有了這樣的心理暗示,課堂上教師很難將其注意力吸引住。所以,大學數學的教材編寫上,必須重視內容的更新和拓展,引入一些建模實例,通過實例激發學習興趣,進而增強學生對數學重要性的認識。

(三)根據學生實際情況,分層次進行教學活動

數學基礎課程一般都是大班級授課,教學過程中教師不可能監控到每個學生的學習狀態。通過數學建模活動,可以有效地考查學生的學習狀態,有助于區分學生的學習層次,教師才能真正做到有的放矢,幫助學生發掘自身潛力,培養學生學習成就感,激發學生學習興趣。

四、結束語

將數學建模思想融入大學數學教學中,給從事數學課程教學的教師帶來了新的挑戰。盡管面臨較大的壓力,但如果能夠積極發揮自身作用進行改革,在教學過程中逐漸融入數學建模思想,必定會使得我們的大學數學教學工作做得更好,學生更有興趣學習數學。

參考文獻

[1]王芬,夏建業,趙梅春,等.金融類高校高等數學課程融入數學建模思想初探[J].教育教學論壇,2016(1).

[2]吳金枚.數學建模的三大作用[J].當代教育發展學刊,2010:5-6.

[3]沈文選,歐陽新龍.簡析中學數學建模的教育性質[J].ForumonCurrentEducation,2002(2):91-92.

篇(7)

2數學思想對高職數學教學的啟示

2.1數學思想在數學教材內容體系中的呈現

高等職業院校的數學教學是以應用為重點,必需夠用為度,突出職業教育特色。因此,使學生掌握日常生活、生產中必備的數學知識,能以數學為工具解決一定的實際問題應作為高職數學教學的主要目標之一。數學方法是指在提出問題,解決問題(包括數學內部問題和實際問題)的過程中所采用的各種方式、手段、途徑等,其中包括交換數學形式。但數學教材并不是這種探索過程的真實記錄。恰恰相反,教材對完美演繹形式的追求往往掩蓋了內在的思想方法,顛倒了數學真理的發現過程。整個高等數學其主要思想觀點就是運動與變化的觀點,以運動與變化的觀點去考察問題,從運動與變化中去認識事物,這是唯物辯證法在數學中的反映。例如,高等數學就是從圓的內接正多邊形面積的變化中去認識圓的面積,從割線運動中去認識切線,從平均速度的變化中去認識瞬時速度等等。而初等數學基本上不涉及運動與變化,只是在幾個相對固定量的關系中從已知求未知。研究對象從初等數學主要研究常量的運算和固定不變圖形的性質,反映運動與變化的數學概念是變量與函數,到高等數學是以變量及變量之間的依賴關系函數作為研究對象。解決問題的基本方法是極限,這是因為在數學和科學技術應用發展中,所帶來出現的問題表現出的矛盾,如“曲”與“直”、“均勻”與“非均勻”等等,雖然各自的具體意義千差萬別,但表現在數量關系上都歸結成“近似”與“精確”的矛盾。解決這一矛盾的有效方法就是極限方法,借助于這實質上深刻的辯證法,使人們清楚地看到,定不變的事物是過程、運動的結果。高職數學內容全面,結構嚴密,通過本課程的學習可以使學生初步獲得從數和形兩個方面洞察現實世界、用數學方法解決問題的能力。同時,它能提高學生的科學和文化素質。找到他們學習中遇到的問題和困難調動和激發學生在教和學中的積極性,發揮他們的潛能,為學生后續課程學習的奠定必需的數學基礎。使學生明白高等數學這門課程正在滲透到許多專業基礎課和專業課當中。高職數學既是工具,又是文化,學生自身也要加強對高等數學應用能力的培養。才能獲得掌握和認識新理論、新知識、新方法強有力的工具。教師在傳授知識的過程中應使數學思想的精神得以完整的體現。使學生了解和認識一個較為完整的數學知識體系。

2.2數學思想是課堂教學實施的精髓,是學生能力培養的核心指導思想

數學既有一般科學的特征,又具有橫向移植的特點,因而在整個科學領域中有著廣泛應用。數學方法是指用數學語言表述事物的狀態、關系和過程,并加以推導、演算和分析,以形成對問題的解釋、判斷和預言。數學思想以解決問題為根本,指導人們從數學概念、命題、規律、方法和技巧的本質認識中獲取解決自然科學、技術科學或社會科學等各個方面問題的具體途徑、策略和手段。數學是集嚴密性、邏輯性、精確性和創造性與想象力與一身的學科。它的這些特點決定著高職數學教學培養目標是使受教育者不僅具有一定的數學素質和應用數學知識去發現問題和解決問題的能力,而且要使學生通過學習數學,更具有敏銳的洞察能力、分析歸納和邏輯推理能力,將抽象性的邏輯思維和創造性的發散思維結合起來,創造性地應用數學知識去解決現代科學技術所面臨的許多問題。進入高職學習的學生,他們在面臨的學習方法和學習形式上都發生了重要的變化。目前對于入學的高職學生群體中體現入學起點較低,中學數學基礎知識的能力水平參差不齊,由于高職數學要求的是“以應用為目的,以必須夠用為度”教學原則,教學時間和教學內容上都進行了壓縮和調整,對教師要求備課中要深入鉆研教材和參閱有關參考材料,要善于從具體的數學知識中挖掘和提煉出數學思想方法,要預先把全書、每單元章節所蘊涵的數學思想方法及它們之間的聯系搞明確具體,然后統籌安排,有目的、有計劃和有要求地進行數學思想方法的課堂教學提出了更高的要求。教師在教學過程中應首先培養學生學習數學的興趣,因為“興趣是最好的老師”。教師要注重運用啟發式教學原則,充分調動學生學習數學的積極性。備課充分、規范,教學態度端正,治學嚴謹,關心學生,做學生的知心朋友。教師在教學應教育學生樹立學好數學的信心,調動和激發他們的學習熱情,深刻去體會數學思想的作用和意義,逐步形成良好的學習能力,鍛造學生的辨證觀。例如,導數概念在工程技術上更多的是被稱為在一點的變化率,在數學課上強調這一點,可使學生迅速地接受專業概念的數學描述;另一方面還要對數學概念的實質分析透徹,以使學生能夠意識到哪類專業問題可以使用相應的數學概念去表述,應用相應的數學知識去解決。對于習題課的教學中,要盡可能注意避免陷入模式化的算式形式,著重要以應用為中心,生動活潑地突出應用,引導和啟發學生運用數學思想和方法去思維,而去解決實際問題作用,也還要能使不同水平的學生都能意識到數學的意義,從中領略到自己需要的東西。

2.3數學知識背景學習能深化學生對數學思想的認識

學生在數學教學過程和學生的學習過程中,教材是按知識的體系編寫的,是邏輯的,嚴謹的。對于知識產生的背景和解決的過程介紹的甚少。適當地給學生介紹有關數學發展史,適時開展一些數學講座如“數學熱門話題”,“數學史上的三次危機”等,開闊學生眼界。在高職數學教學中適時去介紹和挖掘教學內容與所學專業和實際生活中實例的聯系,也會對學生學習數學知識起到一定的作用,對他們也能夠形成良好思維和學習興趣也有幫助。這樣既能突出高職的培養目標,學生充分了解數學的發展、數學的價值,培養學生戰勝困難的決心,去激發學生的求知欲望。

2.4數學思想對教師素質的要求

篇(8)

首先,我們確立了以“兒童”作為數學教育研究和實踐的基本立場“。兒童數學教育”就是以兒童發展為本,滿足兒童發展需求,符合兒童認知規律的教育。進一步,我們需要提煉能反映兒童數學教育系統本質特征的因素。英國學者歐內斯特(P.Ernest)在《數學教育哲學》中,提出了數學教育哲學應圍繞以下四個基本問題展開:數學的本質、數學學習活動的本質、數學教育的目的、數學教學活動的本質。參考這一框架,兒童數學教育思想提出了兒童觀、兒童數學教育價值觀、數學觀。(1)兒童觀兒童數學教育思想的“兒童觀”是:兒童是活生生的人、兒童是發展中的人。“兒童是活生生的人”,意味著兒童是具有豐富情感、有個性、有獨立人格的完整的生命體。因此,教師要尊重兒童、理解兒童、善待兒童,使得每一個兒童都能有尊嚴地生活在集體中。“兒童是發展中的人”,意味著兒童是有潛力的人,但又同時具備不成熟的特點,因此教師要充分相信兒童,要注意開發、挖掘兒童身上的潛能,兒童能做到的教師一定不要包辦代替,促進兒童的自我成長,讓其在自主探索中形成自信和創新能力。兒童又是未成熟的個體,所以教師要包容、悅納他們的錯誤,并善于利用錯誤資源,使之成為促進兒童再發展的新能源。因此,兒童的學習應是學生的主動建構及與同伴和教師互動交流的活動,是一個自產生、自組織與自發展的過程。教育的任務就是激發和促進兒童“內在潛能”,并使之循著兒童成長的規律獲得自然和自由發展。(2)兒童數學教育價值觀兒童數學教育思想的“價值觀”是:數學教育的價值是促進學生的全面發展,數學教育的目標是使學生在數學學習的過程中汲取知識、增長智慧、浸潤人格。為此,教師要教與生活聯系的數學,要使學生體驗數學知識產生的生活背景,感受數學的發生、發展和應用過程,感受數學的價值;要教相互聯系的數學,在學習新知識中播下知識的“種子”,在溝通聯系中體會數學的整體;教有思想的數學,注重數學的基本思想,使學生收獲數學思考和問題解決的方法,啟迪學生的智慧;教美的數學,使學生在學習過程中體會數學的內在魅力,從而產生好奇心和興趣,進而為形成美的心靈和情操奠定基礎;教能完善人格的數學,使學生形成“做真人、懂自律、負責任、有毅力和會自省”的品格。(3)數學觀關于數學本質及其作用的認識對學校的數學課程,教學與教學研究的發展有著關鍵的影響(J.Dossey)。M.Niss更是強調數學教師數學觀的重要性,他有一段應當引起所有數學教師深思的話:“缺乏多元多維的數學觀也許是今天數學教師的致命弱點。”對于“多元多維”的理解,至少可以體現在如下方面:數學不僅僅是計算,而是包括著數量、關系、圖形、規律、不確定性、解決問題等豐富的內容。數學不僅僅包括靜止的結果,更包括生動活潑、富有創造的發生、發展和應用過程。數學不僅僅需要演繹推理和證明,還需要觀察、分析、類比、歸納、實驗等火熱的思考,還需要好奇、自信、毅力、實事求是…………

2.以特色課堂為核心的教學策略

在數學教學實踐中,吳正憲團隊創造了體現兒童數學教育的八種特色課堂:真情流淌的生命課堂、經驗對接的主體課堂、思維碰撞的智慧課堂、機智敏銳的靈動課堂、縱橫聯通的簡捷課堂、以做啟思的實踐課堂、追本溯源的尋根課堂、充滿魅力的生活課堂。“真情流淌的生命課堂”的基本特征是:用真心引領學生進行學習;用真情營造學生敢說敢為的學習氛圍;用真情喚起學生成長的力量。“經驗對接的主體課堂”的基本特征是:運用情境喚起學生的經驗;用學生經歷過的例子幫助學生學習;鼓勵學生形成自己的理解和表達方式。“思維碰撞的智慧課堂”的基本特征是:激發學生在“問題串”中不斷深入地進行思考;鼓勵學生在比較中辨析;促進學生在解決“沖突”中提升。“機智敏銳的靈動課堂”的基本特征是:預設靈動的學習資源;創造靈動的學習機遇;激發靈動的學習智慧。“縱橫聯通的簡捷課堂”的基本特征是:梳理學生心中的數學;在聯系中啟發學生新的生長。“以做啟思的實踐課堂”的基本特征是:鼓勵學生在操作和實踐中體驗;促進學生在體驗中進行思考;激發學生在思考中進行創造。“追本溯源的尋根課堂”的基本特征是:體現數學發生和發展的創造過程;在數學思考過程中體驗數學的思想方法;感受數學的文化價值。“充滿魅力的生活課堂”的基本特征是:從生活實際中創設情境;鼓勵學生運用數學解決實際問題;積淀生活經驗回歸數學。

二、“再起航”:兒童數學教育思想理論內涵的提煉與創新實踐

2014年12月8日,北京教育科學研究院兒童數學教育研究所正式成立,研究所的成立是為了真正體現北京教科院基礎教育教研工作的價值,促進實現既體現教育真諦又具有首都特色的北京兒童數學教育教學,提煉北京市兒童數學教育思想和教育教學研究成果。研究所的成立標志著兒童數學教育思想研究和實踐進入了一個新的階段,這一階段的一項重要工作是開展“兒童數學教育思想理論內涵與創新實踐”的研究。這項研究工作正是對兒童數學教育思想的深化。深化主要體現在三個方面。第一,在新課程背景下的深化。在課程標準中,對于數學教學提出了一些新要求,比如培養學生發現和提出問題的能力。這些應該在兒童數學教育實踐中得以體現。第二,在價值分析、學生研究基礎上的深化。兒童數學教學實踐,離不開對于教育價值全面實現、遵循兒童學習規律的這些基本問題的叩問。本研究將選擇小學數學的某些核心內容開展教育價值分析、學生學習路線的研究,并在此基礎上進行教學和評價的整體設計。第三,在實踐效果檢驗下的深化。教學研究和改革的效果如何,需要進一步做教學實驗,在實踐中加以檢驗。

1.進一步完善和構建“兒童數學教育思想”

本研究將進一步提煉和總結兒童數學教育思想的內涵,總結出具有普遍意義的兒童觀、兒童教育觀、數學觀,指導數學教學的實踐。具體說來,需要回答以下幾個主要問題:第一,兒童數學教育思想下的兒童觀、兒童教育觀、數學觀是什么?第二,兒童數學教育思想體系的核心要素及其關系是什么?第三,兒童數學教育思想指導下的課程設計、教學、評價的特點和原則是什么?

2.開展兒童數學教育視角下的整體教學實驗

能夠對課程與教學實踐產生最直接、最為具體影響的教育研究可能非教學改革實驗莫屬,兒童數學教育思想指導下開展的教學實驗必然具備“整體”的特征:第一,教育價值在兒童發展中的整體實現;第二,基于價值分析、學生研究的教學評價的整體設計。根據數學課程改革的新要求、教師實踐中的困惑、本課題的研究基礎,本課題選擇以下兩個方面作為研究的切入點:培養學生發現和提出問題能力的整體教學實驗、發展學生數據分析觀念的統計教學整體實驗。(1)培養學生發現和提出問題能力的研究和實踐自20世紀80年代以來,有關數學問題提出的教學研究引起了國內外數學教育界的關注。其主要原因在于:以“問題解決”為核心的數學教育改革運動的興起,以及知識經濟社會對數學教育提出的創新人才的培養要求。許多國家都把培養學生的問題提出能力作為一項重要的課程目標,在《義務教育數學課程標準(2011年版)》中,也把原來的“分析和解決問題能力”拓展為“發現和提出、分析和解決問題的能力”。圍繞著“培養學生發現和提出問題的能力”,以下問題需要我們深入思考和實踐:第一,一個“好”的數學問題發現和提出的過程一般經歷了哪些環節?學生的思維過程是什么?第二,不同年級的學生在發現和提出數學問題的目標和過程方面有何差異?促進他們提高的策略方面有什么不同?第三,從整體設計上看,培養學生發現和提出問題能力不僅僅局限在學習之前,素材也不僅僅停留在根據情境提出問題上,特別是如何培養學生運用數學的眼光從生活中發現問題,還有哪些培養目標、培養時機、選擇素材和活動設計?第四,發現和提出問題,對于不同學生的作用和價值是什么?(2)發展學生數據分析觀念的統計教學研究在《義務教育數學課程標準(2011年版)》中將數據分析觀念作為統計課程的核心,并闡述了數據分析觀念的內涵“:了解在現實生活中有許多問題應當先做調查研究,收集數據,通過分析做出判斷,體會數據中蘊含著信息;了解對于同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法;通過數據分析體驗隨機性,一方面對于同樣的事情每次收集到的數據可能不同,另一方面只要有足夠的數據就可能從中發現規律,數據分析是統計的核心。”這實際上也體現了人們對統計課程教育價值的深入理解。在教學實際中,無論是教材編寫還是教學實施,大家普遍感覺統計知識和技能的落實比較容易,但數據分析觀念在各個年級的具體表現是什么,如何根據不同年級學生的特點設計合理的活動來發展數據分析觀念,這些都是亟待解決的問題。針對以上的兩個切入點,我們將采取教學實驗的研究方法,設計基于價值分析、學生研究的整體教學實驗方案;按照新的教學實驗方案進行教學實驗;對于教學實驗過程中和之后學生的變化和發展進行評估;分析實驗的效果,學生在解決實際問題方面的能力、學生的數據分析觀念是否有提高,有哪些方面的提高,其典型表現(群體表現和個案學生表現)是什么;在實驗的基礎上對于教學和評價提出建議。

3.兒童數學教育思想指導下的課例研究

篇(9)

小學數學教材是數學教學的顯性知識系統,許多重要的法則、公式,教材中只能看到漂亮的結論,許多例題的解法,也只能看到巧妙的處理,而看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的心智活動過程。因此,數學思想方法是數學教學的隱性知識系統,小學數學教學應包括顯性和隱性兩方面知識的教學。如果教師在教學中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習這一傳統的教學過程,即使教師講深講透,并要求學生記住結論,掌握解題的類型和方法,這樣培養出來的學生也只能是“知識型”、“記憶型”的,將完全背離數學教育的目標。

在認知心理學里,思想方法屬于元認知范疇,它對認知活動起著監控、調節作用,對培養能力起著決定性的作用。學習數學的目的“就意味著解題”(波利亞語),解題關鍵在于找到合適的解題思路,數學思想方法就是幫助構建解題思路的指導思想。因此,向學生滲透一些基本的數學思想方法,提高學生的元認知水平,是培養學生分析問題和解決問題能力的重要途徑。

數學知識本身是非常重要的,但它并不是惟一的決定因素,真正對學生以后的學習、生活和工作長期起作用,并使其終生受益的是數學思想方法。未來社會將需要大量具有較強數學意識和數學素質的人才。21世紀國際數學教育的根本目標就是“問題解決”。因此,向學生滲透一些基本的數學思想方法,是未來社會的要求和國際數學教育發展的必然結果。

小學數學教學的根本任務是全面提高學生素質,其中最重要的因素是思維素質,而數學思想方法就是增強學生數學觀念,形成良好思維素質的關鍵。如果將學生的數學素質看作一個坐標系,那么數學知識、技能就好比橫軸上的因素,而數學思想方法就是縱軸的內容。淡化或忽視數學思想方法的教學,不僅不利于學生從縱橫兩個維度上把握數學學科的基本結構,也必將影響其能力的發展和數學素質的提高。因此,向學生滲透一些基本的數學思想方法,是數學教學改革的新視角,是進行數學素質教育的突破口。

二、小學數學教學中應滲透哪些數學思想方法

古往今來,數學思想方法不計其數,每一種數學思想方法都閃爍著人類智慧的火花。一則由于小學生的年齡特點決定有些數學思想方法他們不易接受,二則要想把那么多的數學思想方法滲透給小學生也是不大現實的。因此,我們應該有選擇地滲透一些數學思想方法。筆者認為,以下幾種數學思想方法學生不但容易接受,而且對學生數學能力的提高有很好的促進作用。

1.化歸思想

化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同于一般所講的“轉化”、“轉換”。它具有不可逆轉的單向性。

例1狐貍和黃鼠狼進行跳躍比賽,狐貍每次可向前跳41/2米,黃鼠狼每次可向前跳23/4米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔123/8米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?

這是一個實際問題,但通過分析知道,當狐貍(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離41/2(或23/4)米的整倍數,又是陷阱間隔123/8米的整倍數,也就是41/2和123/8的“最小公倍數”(或23/4和123/8的“最小公倍數”)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求“最小公倍數”的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。

2.數形結合思想

數形結合思想是充分利用“形”把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系,使問題簡明直觀。

例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?

附圖{圖}

此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫一個正方形,并假設它的面積為單位“1”,由圖可知,1-1/32就為所求,這里不但向學生滲透了數形結合思想,還向學生滲透了類比的思想。

3.變換思想

變換思想是由一種形式轉變為另一種形式的思想。如解方程中的同解變換,定律、公式中的命題等價變換,幾何形體中的等積變換,理解數學問題中的逆向變換等等。

例3求1/2+1/6+1/12+1/20+……+1/380的和。

仔細觀察這些分母,不難發現:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考慮和式中的一般項

a[,n]=1/n×(n+1)=1/n-1/n+1

于是,問題轉換為如下求和形式:

原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)

=1-1/20

=19/20

4.組合思想

組合思想是把所研究的對象進行合理的分組,并對可能出現的各種情況既不重復又不遺漏地一一求解。

例4在下面的乘法算式中,相同的漢字代表相同的數字,不同的漢字代表不同的數字,求這個算式。

從小愛數學

×4

──────

學數愛小從

分析:由于五位數乘以4的積還是五位數,所以被乘數的首位數字“從”只能是1或2,但如果“從”=1,“學”×4的積的個位應是1,“學”無解。所以“從”=2。

在個位上,“學”×4的積的個位是2,“學”=3或8。但由于“學”又是積的首位數字,必須大于或等于8,所以“學”=8。

在千位上,由于“小”×4不能再向萬位進位,所以“小”=1或0。若“小”=0,則十位上“數”×4+3(進位)的個位是0,這不可能,所以“小”=1。

在十位上,“數”×4+3(進位)的個位是1,推出“數”=7。

在百位上,“愛”×4+3(進位)的個位還是“愛”,且百位必須向千位進3,所以“愛”=9。

故欲求乘法算式為

21978

×4

──────

87912

上面這種分類求解方法既不重復,又不遺漏,體現了組合思想。

此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。

三、小學數學教學應如何加強數學思想方法的滲透

1.提高滲透的自覺性

數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有“形”的,而數學思想方法卻隱含在數學知識體系里,是無“形”的,并且不成體系地散見于教材各章節中。教師講不講,講多講少,隨意性較大,常常因教學時間緊而將它作為一個“軟任務”擠掉。對于學生的要求是能領會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鉆研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對于每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎么滲透,滲透到什么程度,應有一個總體設計,提出不同階段的具體教學要求。

2.把握滲透的可行性

篇(10)

二、數學建模思想融入課堂教學

教師在講授概率論與數理統計課程時,面臨著非常重要的任務。如何讓學生通過學習增強對本課程的理解,并將知識合理地運用到實踐中,是擺在教師面前的問題。教師要將數學建模思想合理地融入到課堂。

(一)課堂教學側重實例

概率論與數理統計課程是運用性很強的一門課程。因此,將教學內容與實例想結合,可以有效提高學生的理解力,加深學生對知識點的印象。例如,在講授概率加法公式的時候,可以用“三個臭皮匠問題”作為為實例。“三個臭皮匠賽過諸葛亮”是對多人有效合作的一種贊美,我們可以把這個問題引入到數學中來,從概率的計算方面驗證它的正確性。首先可以建立起數學模型,三個臭皮匠能否賽過諸葛亮,主要是看他們解決實際問題的能力是否有差距,歸結為概率就是解決問題的概率大小比較。不妨用C表示諸葛亮解決某問題,Ai表示第i個臭皮匠單獨解決某問題,其中i=1,2,3,每個臭皮匠解決好某問題的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而諸葛亮成功解決問題的概率是P(C)=0.90。那么事件B順利解決對于諸葛亮的概率是P(B)=P(C)=0.90,而三個臭皮匠解決好B問題的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解決此問題的過程中,學生既感受到了數學建模的樂趣,也在輕松的氛圍中學習到了概率知識。這種貼近實際生活的教學方式,不但可以提高學生學習概率的積極性,也可以增強教師從事素質教育的理念。

(二)開設數學實驗課

數學實驗一般要結合數學模型,以數學軟件為平臺,模擬實驗環境進行教學。發展到今天,計算機軟件已經很成熟,一般的統計計算都可以由計算機軟件來完成。SPSS、SAS、MABTE等軟件已經廣泛得到了運用,較大數據量的案例,如統計推斷、數據模擬技術等方面的問題,都可以用這些軟件來處理。通過數學實驗,不但可以體現數學建模的全過程,還能增強學生的應用意識,促使他們主動學習概率論與數理統計知識。學生通過軟件的學習與運用,增強了動手能力,解決實際問題的能力也會有所增強。

(三)使用新的教學方法

眾所周知,傳統的填鴨式的教學方法很難取得好的教學效果,已經不適應現代教學的要求。實踐證明,結合案例的教學方法可以由淺入深,從直觀到抽象,具有一定的啟發性。學生可以從中變被動為主動,加深對知識的理解。這種教學方法還能讓學生的眼光從課堂上轉移到日常生活,進行發散思維,學生會進一步發揮主觀能動性,思考如何將實際問題數學化,如何結合概率論與統計知識解決實際問題,等等。在這種情況下,學生的興趣提高了,教學效率自然也會得到提高。

(四)建立合理的學習方式

概率論與數理統計教學不能一味地照本宣科。數學建模并無固定模式,它需要的更多是技能的綜合。教師在實際教學過程中,不應該以課本為標準,而應該多引導學生自主解決實際問題,讓學生去查閱相關背景資料,以提高其自學能力。教師可以適當補充一些前言的數學知識,讓一些新觀念和新方法開闊學生的視野。在處理習題問題上,教師要適當引入一些不充分的問題,而不是僅僅局限于條件比較充分的問題上,要讓學生自己動手分析數據、建立模型。教師應該經常開展專題討論,引導學生勇于提出自己的見解,加強學生間的交流與互助。例如,在講授二項分布知識時,為了加深學生對知識的領悟,教師可以用“盥洗室問題”為實例來講授二項式的實際運用。問題:宿舍樓內的盥洗室處于用水高峰時,經常要排隊等待,學生對此意見很大。學校領導決定把它當作一道數學題來解答,希望學生能從理論上給出合理的解決方法。分析:首先收集基本的資料,盥洗室有50個水龍頭,宿舍樓內有500個學生,用水高峰期為2小時(120分鐘),平均每個學生用水時間為12分鐘,等待時間一般不超過12分鐘,但經常等待會讓學生失去耐心。學生希望100次用水中等待的次數不超過10次。解決方法:設X為某時刻用水的學生人數,先找到X服從什么分布。500個學生中,每個學生的用水概率是0.1,現在X人用水,與獨立實驗序列類似,比較適合用二項分布,因此設X服從二項分布,n=500,p=0.1,用概率公式表示為P(X=K)=CKnPK(1-P)n-K。接下來計算概率,主要關注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,這個二項式分布是一個初步的模型,可按二項分布來計算。由于n較大(n=500),直接用二項分布計算過于復雜,我們可以利用兩種簡化近似公式來計算(泊松分布和正態分布)。經過查正態分布表,我們可以算出x=58,這說明水龍頭的個數在59~62這個范圍時,學生等待的時間概率比較合理。

三、課后練習反饋數學建模思想

數學課程離不開課后練習,課后作業是其重要的組成部分,對于鞏固課堂知識、進一步理解所學理論具有重要作用。因此,教師要把握好課后練習環節。概率論與數理統計這門課涉及到很多隨機試驗,一般的統計規律都需要在隨機試驗中找到結果。例如通過投擲骰子或硬幣可以理解頻率與概率的關系,通過雙色球的抽樣可以理解隨機事件中的相互獨立性,統計一本書上的錯別字可以判斷其是否符合泊松分布等。通過親自做實驗,學生們不但能探求到隨機現象的規律性,還能進一步鞏固所學的統計理論。除了一般的練習題以外,教師可以適當增加一些與日常生活密切相關的概率統計題目,這些題目往往趣味性較強。例如,在知道彩票的抽獎方法和中獎規則后,可以明確三個問題:(1)摸彩票的次序與中獎概率是否相關?(2)假如彩票的總量是100萬張,則一、二等獎的中獎概率是多少?(3)一個人打算買彩票,在何種情況下中獎概率大一些?這種課后練習對于學生趣味的提高很有幫助。

四、考核方式折射數學建模思想

作為一門課程,肯定需要考核,這是教學過程中的一個必然環節。課程考核是評估教學質量的重要方式。概率論與數理統計課程傳統的考試一般采用期末閉卷考試,教師通常按固定的內容出題。這種情況下,學生為了應付考試,會把很多精力都用在背誦公式和概念上面,從而會忽視知識的實際運用。學生的綜合成績雖然也包括平時成績,但期末閉卷考試往往占據很大比例。就是是平時成績,其主要還是考核學生課后的習題完成情況。因此,考核實際就成了習題考試。對于學生在課后的實驗,考核中往往很少涉及。這會導致學生逐漸脫離日常實際,更注重課堂考勤和作業。要改變這種情況,有必要改變傳統的考核方式。靈活多變的考核方式才更有利于調動學生的積極性,激發他們各方面的潛能。考核可以適當增加平時成績所占的比重,比如,平時成績可以占總成績的30%以上。平時成績主要采用開放性考核,由課后實驗或課外實踐組成。教師可以提出一些實踐問題,讓學生自主去解決。學生可以單獨完成任務,也可以組隊進行,最后提交一份研究報告,教師在此基礎上進行評定。

上一篇: 中考數學論文 下一篇: 社區安全管理論文
相關精選
相關期刊
久久久噜噜噜久久中文,精品五月精品婷婷,久久精品国产自清天天线,久久国产一区视频
亚洲人成电影在线天堂 | 婷婷六月在线视频中文字幕 | 最新国产人成视频 | 中国亚洲呦女专区 | 亚洲视频在线看 | 污污网站国产精品白丝袜 |