人工智能技術論文匯總十篇

時間:2023-03-16 15:26:52

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇人工智能技術論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

人工智能技術論文

篇(1)

2人工智能技術在電氣自動化控制中的應用

2.1人工智能控制實現了數據的采集及處理功能

在電氣設備的運行過程中,數據的采集和處理是了解電氣設備自動化控制情況,發現運行過程中的問題和提出解決辦法的重要依據。在傳統的自動化控制中,由于技術水平和實際運行中的動態變化,數據的采集和傳輸無法做到準確和穩定,保存數據容易出現丟失的情況。人工智能技術的使用,可以保障電氣自動化運行過程中對動態信息的及時收集和穩定傳輸,對相關數據的保存工作也更安全,這就提高了電氣自動化的控制水平,充分保障了電氣運行中的安全性和穩定性。

2.2人工智能控制實現了系統運行監視機報警功能

電氣自動化控制是用電氣的可編程控制器,控制繼電器,帶動執行機構,完成預期設計動作的過程。在此過程中,系統內部各部分之間的運行都要嚴格按照設計模型和函數計算的基礎上進行,如果系統中的一點出現問題,就會造成整個自動控制系統的故障。在以往的自動化控制系統運行中,對系統內部各部分之間的運行數據和運行狀態進行實時監測,對運行中的特殊情況進行及時的報警處理,幫助自動化系統及時處理可能出現的故障,提醒電氣管理人員加強對電氣系統的管理。

2.3人工智能控制實現了操作控制功能

電氣自動化控制的主要特征之一就是通過計算機的一鍵操作,就可以實現對電氣系統的整體控制,保障電氣自動化運行符合現實的需要。傳統的自動化系統的操作,需要靠人工對系統各個環節進行人工操作,從而促進自動化系統內部的協調和配合,這種方式既降低了自動化運行的效率,也增加了自動化系統的故障發生頻率。人工智能技術對電氣自動化系統的控制,是通過各種先進的算法,按照電氣自動化的需求,對自動化系統進行自動化和智能化設計,從而實現對電氣自動化控制系統的同時操作,大大提高了自動化控制的效率,減少了單獨指令操作中容易出現的不協調情況的發生。

3人工智能技術在電氣自動化控制中的控制方式

3.1模糊控制

模糊控制以模糊推理和模糊語言變量等為理論基礎,并以專家經驗作為模糊控制的規則。模糊控制就是在被控制的對象的模糊模型的基礎之上,運用模糊控制器,實現對電氣控制系統的控制。在實際控制設計過程中,通過對計算機控制系統的使用,使電氣自動化系統形成具有反饋通道的閉環結構的數字控制系統,從而達到對電氣自動化系統的科學控制。

3.2專家控制

專家控制是指在進行電氣自動化控制過程中,利用相關的系統控制理論和控制技術的結合,通過對以往控制經驗的模擬和學習,實現電氣自動化控制中智能控制技術的實施。這種控制方式具有很強的靈活性,在實際運行中,面對控制要求和系統運行情況,專家控制可以自覺選取控制率,并通過自我調整,強化對工作環境的適應。

3.3網絡神經控制

網絡神經控制的原理就是基于對人腦神經元的活動模擬,以逼近原理為依據的網絡建模。神經控制是有學習能力的,屬于學習控制,對電氣自動化控制中出現的新問題可以及時提出有效的解決辦法,并通過對相關技術問題的分析解決,提高自身的人工智能水平。

篇(2)

2計算機網絡技術的問題

目前,隨著計算機技術的廣泛應用,人們愈發重視有關網絡信息安全問題。在網絡管理系統的應用過程中,用戶最為關注的功能便是網絡監視與網絡控制,其中,為正常發揮網絡監視及網絡控制這兩大功能,就需要對信息急性及時獲取與準確處理。網絡傳輸的數據通常是不連續、不規則的,而在早期階段,計算機只具備邏輯化分析及處理數據的功能,難以準確判斷出數據的真實性,因此,為從大量繁復的信息中,挑選出有效的信息,實現計算機網絡技術的智能化具有非常重要的意義[2]。計算機的應用日益廣泛與深入,這使得用戶需要通過網絡安全管理來為其信息安全提供保障,而網絡犯罪現象的增多,使得計算機必須具備靈敏的觀察能力及迅速的反應能力否則便難以對侵犯用戶信息的各種違法犯罪行為進行有效遏制。為促進網絡安全管理的實現,就需要將以人工智能技術為基礎而建立起來的智能化管理系統作為有效手段,自動收集信息數據,及時診斷運行故障,并在線分析趨勢及性能等,從而確保計算機發生網絡故障時,可做出快速、準確的反應,并采取有效措施來恢復計算機的網絡系統。由此可知,針對計算機網絡中存在的問題,就需要應用人工智能技術,在其內部建立完善的網絡管理及防御系統,從而為用戶信息安全提供充分保障。

3計算機網絡技術中人工智能的應用分析

在計算機網絡技術中應用人工智能,可極大程度滿足人們對計算機提供人性化及智能化服務的需求。其中,計算機網絡技術智能化服務主要指的是智能化的人機界面、信息服務、系統開發及支撐的環境這幾個方面,與此同時,這些需求進一步促進了人工智能在計算機網絡技術,尤其是在智能人機界面、網絡安全及系統管理評價等方面的應用進程。

3.1人工智能在計算機網絡安全管理中的應用。在計算機網絡技術中,人工智能得到了極為廣泛的應用。在計算機網絡安全管理中,人工智能的應用主要表現在智能防火墻、入侵檢測、智能型反垃圾郵件系統這三個方面。相比于其他防御系統,智能防火墻系統采用的是智能化識別技術,例如,通過概率、統計、記憶、決策等方法,來識別并處理有關信息數據,不但有效減少了計算機匹配檢查過程中的龐大計算,而且大大提高了發現網絡有害行為的效率,從而實現了限制訪問及攔截有害信息的功能;此外,與傳統防御軟件相比,智能防火墻系統具有更高的安檢效率,從而將拒絕服務共計這一普通防御軟件普遍發生的問題進行有效解決,實現了高級應用的入侵及病毒傳播的有效遏制[3]。作為計算機網絡技術安全管理的一項重要環節,入侵檢測起著保證網絡安全的關鍵作用,同時也是防火墻技術的核心部分。計算機系統資源的保密性、完整性、安全性等均與網絡系統入侵檢測功能的有效發揮有著緊密聯系。入侵檢測技術通過采集、篩選、分類、處理信息數據,在形成最終報告的基礎上,將當前計算機網絡系統的安全狀態及時反映給用戶。現階段,人工智能在模糊識別、專家及人工神經網絡等系統入侵檢測中,得到了非常廣泛的應用。計算機網絡安全管理中的智能型反垃圾郵件系統,是一項以人工智能技術為基礎而研發出來的防護技術,其針對的對象為垃圾郵件。此項技術可在不對用戶信息安全造成影響的前提下,有效監測用戶的郵件,并在完成郵箱內垃圾郵件的開啟式掃面后,將垃圾郵件分類信息提供給用戶,提醒其對可能對自身不利或對系統造成危害的信息進行盡早處理,進而確保整個郵箱的安全性,

3.2人工智能在計算機網絡系統管理及評價中的應用。計算機網絡管理的智能化發展,離不開人工智能技術及電信技術的發展。除了應用在計算機網絡安全管理中,人工智能技術中的問題求解技術及專家知識庫等,均可促進計算機網絡綜合管理的實現。由于網絡具有瞬變性及動態性的特點,因而給計算機網絡管理工作增加了一定的難度,這同時也使得現代化網絡管理工作朝著智能化的方向發展。其中,以人工智能理論為發展基礎的專家級決策及支持方法,在信息系統的管理工作中得到了廣泛應用。作為一項智能計算機程序,專家系統可累積盡可能多的專家經驗與知識,并通過進行歸納與總結,在形成資源錄入系統的基礎上,利用這一匯集了多位特定領域中的專家經驗的系統,對此領域中相似的其他問題進行解決。因此,對于計算機網絡管理及其系統評價,可通過眾多專家系統來開展計算機網絡管理及系統評價等大量工作。

篇(3)

高校培養人才的目的是為社會輸送人才,尤其是為當地社會輸送人才,服務于當地經濟的建設,因此做好調研工作,必須依托于當地企業。調研工作不能流于表面,要發動整個教學團隊的力量。首先,從專業層面應該有整體規劃,確定調研的時間段、調研哪些企業,到具體實施階段,老師下去調研的時候不能僅僅是蓋個章回來就了事,應該提供現場調研的圖片、個人小結等資料,另外為了調動老師的積極性,專業層面可以發放調研津貼。材料收集好之后,要依據材料進行細致的分析、總結工作,提煉出對制訂人才培養方案有用的信息,尤其是企業需要什么樣的綜合人才、崗位能力分析、職業資格證書的獲取情況等。

1.2充分發揮校企合作委員會的作用

每個專業都有自己的專業指導委員會或是校企合作委員會,要充分發揮其作用。首先在人選是一定要經過篩選,務必選擇一個對整個專業發展能夠提供指導性意見的人,這就需要他有在這個行業多年的工作經驗,另外需要熱愛教育事業,不能只是來掛個名,開個會,還需要在平時的各項工作中直到作用。

2.做好課程體系建設

2.1根據專業情況重新整合課程體系

每個專業發展的沿革不一樣,所以制訂課程體系時絕不能照抄照搬別人的。尤其是樓宇智能化工程技術專業,很多課程的開設是需要硬件支撐的,因此有些課程其他學校能開,本校可能開不了。另外,要充分考慮到師資情況,校內教師上不了的課程,要請企業老師來上課,如果連企業老師也找不到合適的,就得考慮這門課程是否能開設。

2.2注重實踐課程的教學設計

高職高專的學生,人才培養的目標并不是研究型人才,而是技術型人才,因此要充分做好實踐課程體系的建設。首先,理實一體課程要采用一體化的教學模式。教學決不能只在黑板上寫寫劃劃了,現如今90后的學生,接受信息的渠道很多,老師一定要充分備課。師生雙方應該在實驗實訓室邊教、邊學、邊做、邊評定,把理論與實踐教學緊密地聯系在一起。其次,做好學期實訓課程的教學設計。每個學期的實訓內容可以是基于某門課程的也可以是基于多門課程的,以樓宇智能化工程技術專業來說,可以基于電工電子技術進行維修電工的實訓,也可以綜合樓宇智能化工程技術、安防技術、消防技術等進行智能管理系統綜合實訓。這種生產性的實訓課程要盡量聘請資深的企業人員參加,這樣對于教師和學生提高專業技能都有幫助。另外,做好頂崗實習和畢業項目設計。教師在給學生頂崗實習成績評定時要有充分的依據,不能依照個人的喜好,這就需要專業層面制訂合理的規章制度。最后,做好職業認證工作。要為學生制訂彈性的證書獲取機制,每個學期的實訓課程盡量為學生提供考證的機會,告訴學生哪個證是必考的,哪些證書是選考的。這樣學生可以根據自己的需求選考合適的證書。

2.3改革創新考核方式和評價模式

考核的目的是對學生的知識和技能掌握程度的評價,也是對教學效果的一種評估。在改革創新考核形式上,可以根據課程性質的不同采用多種多樣的考核形式,可以積極推進過程考核,讓學生付出的每一份努力都能夠得到回報。總之,真實、客觀的評價對于促進學生的學習是非常有幫助的,不僅能提升學生學習的動力,還能讓其明白處于集體中的責任。

2.4注重綜合素質的培養

人才培養方案制訂過程中要充分注重對于學生綜合素質的培養。尤其是樓宇智能化工程技術這種偏理工科的專業,要讓學生明白一個人以后想在社會上立足并且過得幸福,這跟人的綜合素質是分不開的,并不完全依賴于個人的技能。因此在開設課程時要充分考慮到上述能力的培養,可以開設大學生就業創業、法律法規常識、大學生心理健康教育等公共基礎課,也可以開設電影藝術欣賞、圍棋、書法等素質拓展課。另外,可以在以專業為單位積極鼓勵學生創辦或參加社團,這對于學生綜合能力的培養非常有幫助,讓他們提前了解和融入社會。

篇(4)

計算機輔助工藝設計(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以來,其系統特性經歷了檢索式、派生式、混合式、創成式、智能化等過程,智能化CAPP是當前CAPP系統的研究熱點。CAPP是現代制造業信息化的一部分,是計算機集成制造系統(CIMS:Computer IntegratedManufacturing Systems)中的橋梁和紐帶。“人工智能”(Artificial Intelligence)簡稱AI。它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能研究如何用計算機去模擬、延伸和擴展人的智能;如何把計算機用得更聰明;如何設計和建造具有高智能水平的計算機應用系統;如何設計和制造更聰明的計算機以及智能水平更高的智能計算機等。人工智能是相對于人類智能而言的,它是采用人工的方法和技術來模擬、延伸和擴展人類智能行為的一門綜合學科。

將人工智能技術(AI技術)應用到CAPP系統開發中,使CAPP系統在知識獲取、知識推理等方面模擬人的思維方式,解決復雜的工藝規程設計問題,使其具有人類“智能”的特性即為智能化CAPP,是AI在CAPP中的一種應用。

CAPP系統分為專用型和工具型系統。前者可以根據用戶的特定需求定制開發,針對性強,具有較好的實用性,但對系統進行功能擴展困難;后者可以由用戶根據自身特定的要求進行二次開發,可以實現更多的柔性和開放性,這種系統與CAD(計算機輔助設計)、CAM(計算機輔助制造)、PDM(產品數據管理)等系統的信息共享存在缺陷。

CAPP設計理論目前研究的很少,機械產品設計理論研究的較多,有學者認為設計理論與方法由設計理論基礎層、設計工具和支持技術平臺層等三大部分組成。有的學者提出四理論框架,即設計過程理論、性能需求理論、知識流理論和多方利益協調理論。CAPP設計理論與機械產品設計理論既有共同性又有特殊性,特別在智能化設計方法方面有較大的差別,因此認為面向智能化的CAPP設計理論與方法體系結構由有三層組成,即基礎科學層、信息技術層和智能化設計方法層。

在機械產品工藝設計中,存在大量的不確定因素,許多問題需要靠經驗來解決,早期建立在單純依賴于成組技術基礎上的CAPP系統,不能很好地解決這些離散知識的獲取問題,只能設計出檢索式或派生式系統。近年來,人工智能技術在CAPP系統

開發中的應用,使CAPP技術得到了較大的發展,人工神經網絡技術就是AI在CAPP系統中一大應用。人工神經網絡(ANN: ArtificialNeuralNetwork)是按照生物神經系統原理處理真實世界的客觀事物,它由大量的簡單的非線性處理單元高度并聯而成,具有信息的分布式存儲、并行處理、自組織和自學習及聯想記憶等特性;多層前饋網絡誤差反向傳播(ErrorBack Propagation,簡稱BP)算法。反向傳播算法(BP)是一種監督訓練多層神經網絡的算法,每一個訓練范例在網絡中經過兩遍傳遞計算:第一遍向前推算,從輸入層開始,傳遞各層并經過處理后,產生一個輸出,并得到一個該實際輸出和所需輸出之差的差錯矢量;第二遍向后推算,從輸出層至輸入層,利用差錯矢量對權值進行逐層修改。轉貼于

AI在CAPP中的另一應用——粗糙集技術。粗糙集(RS:Rough Set)理論是一種擅長處理含糊和不確定問題的數學工具,在理論中“知識”被認為是一種對對象的分類能力,通常采用二維決策表來描述論域的信息,其中列表示屬性,行表示對象,每行表示該對象的一條信息。屬性分為條件屬性和決策屬性,論域中的對象根據條件屬性的不同,被劃分到具有不同決策屬性的決策類中。在CAPP系統中,可以用RS理論構建專家系統,對知識進行獲取及優化,其基本思路是:將各種零件的加工特征和已知加工方法表達成條件屬性和決策屬性的形式,一行表示一種零件,多種零件構成一個二維表,對屬性進行量化,組織決策表,再采用一定的約簡算法對屬性集和屬性值進行約簡,去掉冗余的條件屬性和決策規則,得到最小化決策規則集,當輸入待加工的零件加工特征時,就可得到優化的加工工藝。

遺傳算法,AI在CAPP系統的又一應用。遺傳算法(Genetic Algorithm)是模擬達爾文遺傳選擇和自然淘汰的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳算法是從代表問題可能潛在解集的一個種群開始的,而一個種群則由經過基因編碼的一定數目的個體組成,每個個體實際上是帶有染色體特征的實體。因此,在一開始需要實現從表現型到基因型的映射即編碼工作,如二進制編碼。初代種群產生之后,按照適者生存和優勝劣汰的原理,逐代演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度大小挑選個體,并借助于自然遺傳學的遺傳算子進行組合交叉和變異,產生代表新的解集的種群。這個過程將導致種群像自然進化一樣的后生代種群比前代更加適應于環境,末代種群中的最優個體經過解碼,可以作為問題近似最優解。

智能化CAPP系統開發中還有模糊推理、混沌理論等智能化方法,實際應用中,往往將多種智能技術相互結合,綜合運用,發揮各自的特長,如人工神經網絡具有知覺形象思維的特性,而模糊推理等具有邏輯思維的特性,將這些方法相互滲透和結合,可起到互補的作用,提高智能化水平。

智能化是今后CAPP系統發展的主要趨勢,但從目前的人工智能技術水平來看,不可能使CAPP系統在智能化水平上有實質性的突破,因為目前的人工智能技術主要是模擬人的邏輯思維和邏輯推理方面的能力,不能有效地模擬人的形象思維、抽象思維和創造性思維能力,而CAPP系統不僅要有推理的功能,還要有“聯想”的功能, CAPP系統開發是要解決大量的人類思維活動方面的智能問題。因此要提高CAPP系統的智能化水平,必須在人工智能技術方面有新的發展,要解決人工智能技術方面的問題,必須在一些基礎

理論和基礎科學方面有新的突破,如在生命科學、數學等方面要有新的突破。由此可見,在可以預見的將來,智能化CAPP系統的發展仍將是在充分發揮人的智能優勢的基礎上,綜合應用各種人工智能技術,實現CAPP系統的智能化。

通過以上論述,相信大家對計算機輔助工藝設計與人工智能以及AI在CAPP中的應用有了一定的了解。人工智能技術的不斷發展,智能化CAPP系統必將在知識獲取、表達和處理的靈活性和有效性上得到進一步的發展,提高CAPP系統的智能化水平,從而提高現代制造技術水平,是我國由制造大國成為制造強國。

篇(5)

當前的網絡輿情監測工作平臺主要是基于信息采集、整合技術和智能處理技術,通過對互聯網海量信息的自動抓取、自動分類聚類、主題檢測、專題聚焦,實現對用戶的網絡輿情監測,并由相關部門形成輿情工作報告、輿情信息簡報等,為輿論引導提供可靠的分析依據。

進入大數據時代,網絡輿論呈現的新特點,促使網絡輿情監測工作暴露出諸多不足之處,這為網絡輿情監測工作帶來了諸多挑戰。

網絡輿論信息格局發生變化,輿情分析質量亟待提高。據人民網權威的《2016年中國互聯網輿情分析報告》顯示,在2016年,伴隨著移動互聯網應用不斷向社會各層面滲透,網絡輿論的格局發生了很大變化,如網民結構與社會人口結構趨同,網民產生代際更新導致網絡流行議題和文化熱點發生轉換,微博、微信平臺化,專業自媒體步入興盛等。在這樣的變局下,網絡輿情監測工作面臨著新的挑戰。然而,有些部門的輿情信息收集工作仍然停留在報刊、門戶網站、BBS、微博等開源信息的收集階段,并未將新聞客戶端、微信、直播等平臺打通,難以保證輿情信息分析的全面性以及輿情熱度指標的準確性。《2016年中國互聯網輿情分析報告》還對近五年來參與當年最具網絡關注度的20個輿情熱點事件討論的320萬微博用戶樣本進行了分析,發現關注新聞事件和聚焦熱點話題的網民發生了代際交替,在性別方面,女性的比例明顯上升;在地域上,三、四線城市用戶增長迅猛。受眾層面發生的這些變化,也將在輿情監測工作中體現出來。然而在目前的輿情監測工作中,相關信息部門的輿情信息報送在內容上只是就事論事、停留在現象層面,對受眾的成分、熱點事件的社會背景以及事件背后所反映出來的社會問題沒有進行細致深入的研究分析;在形式上,網絡輿情監測工作的報送還停留在工作動態報告或者事件日志等形式的報送上。這樣就造成了網絡輿情信息的價值作用降低、服務能力減弱的問題。

熱點事件話語體系不可控,輿情預警能力亟待增強。縱觀近年來發生的熱點公共突發事件,可以發現,在以大數據為基礎的社交平臺上,公眾的話語體系呈現出了一些全新特征,如輿論主體的匿名性、參與渠道的多元化、生成議題的自發性、交流觀點的無界性、匯集意見的實時性、發展趨勢的不確定性等。這些特征與輿論話語體系在傳統媒體的呈現完全不同,網絡輿論熱點事件話語體系的不可控性大大增強。

在社交媒體平臺上,自媒體呈現出來的話語體系最為龐雜。許多輿情信息不僅包含結構化數據,還涉及大量非結構化數據,若對其準確性、真實性逐一核查,既耗費人力又耗費時間。就內容而言,較多負面、虛假輿情具有較強的隱蔽性,單純以關鍵詞或主題詞進行搜索容易產生誤判、遺漏。話語體系的不可控性增加了輿情監測工作的難度,這要求工作人員必須具備過硬的專業敏感性以及較強的網絡操作技能。但是目前大多數輿情監測工作部門的信息工作人員缺乏專業化的訓練,輿情信息工作水平參差不齊。就輿情監測平臺系統來說,對于輿情信息的跟蹤分析靈敏度較低,在有些熱點事件的處理上沒有按照公共突發事件的分類標準進行準確的分級,從而導致網絡輿情信息的分析判斷力體現不出其應有的情報價值,預警能力也隨之削弱。

輿情監測的技術體系落后,人機不協調問題亟待解決。網絡輿論的實時性及其發展的不確定性要求網絡輿情監測必須迅速、及時,但很多單位部門的輿情監測平臺的方法技術體系滯后,部分單位采用了網絡監控系統、有害信息過濾系統等方式進行網絡輿情監測,而有些單位為了節省輿情監測設備的成本,甚至將網絡輿情監測工作依托于人工網頁搜索及瀏覽的“人工盯梢”方式上,這成為監測工作的一大阻礙,監測工作出現疏忽錯判也在所難免。排除資金、人力等客觀因素,現階段的網絡輿情監測工作中技術方法體系的不足主要歸因于“人機不協調”。機器與人工的協同分工模式不成熟、機器的輔助力量不夠,導致人工智能技術在預測監測體系中分析情感、預測走勢、檢查效果等方面應用還稍顯粗淺、機械,而在需要人工進行的高級維度分析、提出應對策略等層面,機器的應用又顯得粗糙以及同質化。

人工智能為網絡輿情監測帶來的三大變革

網絡輿情監測要適應大數據時代人工智能的要求,就必須順勢而為,積極進行變革,主要包括網絡輿情監測技術體系的變革、網絡輿情監測研究范式的變革以及網絡輿情監測管理思維的變革三個方面。

網絡輿情監測技術體系的變革。將人工智能技術應用于網絡輿情是為了更好地對輿情進行分析研判,通過直觀、簡明的方式描述網絡輿情信息的產生,進一步推導信息傳播主體的態度傾向性、情緒感染性以及初衷、意圖等,從而預測網絡輿情信息的發展趨勢。

如果說在“小數據”環境下,網絡輿情監測工作還可以依托于“人工盯梢”的方式來完成,那么在“大數據”環境下,當數據的量級達到了EB甚至ZB級別后,以人工監測來把握輿情脈絡已成為不可能完成的任務。而那些隱含在網絡輿情信息中的觀點、態度及情緒的表達,更難以從泛濫成災的信息碎片中被真正發掘出來。加之海量信息的不共享所帶來的“信息盲區”,更使得輿情信息分析不夠嚴謹,易偏離實際,而這些問題都需要依托搭建智能化的網絡輿情監管平臺來解決。在平臺上可以通過三種人工智能技術實現數據分析與人工智能研判相結合,再借助如眼動儀、腦電儀等受眾檢驗儀器對網絡輿情信息進行綜合化分析。三種主要的人工智能技術主要包括:一是Web挖掘技術,該技術把互聯網與數據挖掘技術結合起來,對網絡上結構化數據如文字言論,以及非結構化的數據如視音頻、圖像等信息進行采集,完成信息前期處理的第一步;二是語義識別技術,該技術是利用采集到的信息,通過對語句中的關鍵詞進行詞義推斷處理以及句子語法結構的分析,從而將復雜信息簡單化,這是對采集的信息數據做進一步識別推斷的過程;三是TFDF信息聚類技術,該技術主要提升數據信息的分析和分類速度,使網絡輿情監測工作的處理更加及時,反應更加靈敏,提高采取措施的時效性。

人工智能技術的介入將有利于對信息進行挖掘、采集、分類、整理,從而找尋出最核心的關鍵性數據。在此基礎上,還可以運用人工神經網絡預測模型,對網絡輿情的性質、發展趨勢進行正確描述,并提出相應的對策。

網絡輿情監測研究范式的變革。人工智能和大數據對網絡輿情監測工作及其研究產生了頗為深刻的影響,輿情監測的研究范式從多角度發生了轉向。

第一,輿情監測工作視角的轉向:從單一化到多元化。在社交媒體平臺上,受眾的角色首先發生了轉向,由信息的被動接收者轉變為信息的參與者和傳播者。這一轉向給網絡輿情監測工作帶來了新的挑戰,當受眾是單純的信息接收方時,網絡信息的可控性強,輿情監測工作形式單一,把關相對容易。而受眾角色發生變化以后,網絡信息傳播的不可控性大大增加,信息傳播速度加快,信息傳播呈現多元化特征,把關難度增加,網絡輿情監測工作也從單一轉向多元化,還需要對信息進行疏導、研判處理。

第二,研究視角的轉向:從內容研究轉向“內容+關系”研究。傳統的網絡輿情信息研究最重視的是受眾借助網絡進行的話語表達,其研究視角主要集中在內容層面。隨著人工智能技術的介入,這一單向視角將發生轉變,潛藏在內容層面背后的網絡受眾心理、行為、動機、訴求等多方面因素都將被關注到。借助人工智能技術及大數據分析技術,網絡輿情信息的研究視角將透過內容層面深入到關系層面,轉向對網絡受眾社會心理描繪、社會關系呈現、社會話語表達等多維度的研究。

第三,研究重點的轉向:由輿情監測轉向輿情預測。當前的網絡輿情監測工作主要通過對當下網絡輿情的動態信息進行隨機采樣來收集、整理、分析,更多的是關注已經發生的事件在過去及當下的動向,對未來的發展預測難以兼顧。而借助人工神經網絡預測模型,通過自然語言處理、模式識別及機器學習等人工智能技術,可以對網絡輿情的性質、發展趨勢進行正確描述,再結合大數據分析處理整群數據來實現預測功能。比如,著名的搜索引擎公司谷歌通過關注用戶搜索中的“流感”關鍵詞來預測實際流感發生的時間,往往可以提前兩三個周對流感的爆發進行預報及預防。

網絡輿情監測管理思維的變革。在以人工智能技術為支撐的網絡輿情監測平臺出現之前,相關輿情監測部門的管理者往往由一人或幾人的小團隊組成,在監測信息數據量級不大的情況下,這種小作坊式單打獨斗、面面俱到的輿情監控管理思維可以基本滿足需求。但是隨著人工智能技術的發展及大數據時代的到來,這種小作坊式的輿情監測體系面臨瓦解。當前,商業化運營的軟件監測團隊多達幾百家,這些監測軟件服務商通過開發相應的輿情監測軟件為政府部門、企業主體以及科研院所提供服務,進行簡單的輿情信息數據采集及分類處理工作。在數據開源的情況下,這些軟件服務商的競爭逐漸由粗放型、低層次化向數據處理的優化、人機互動、機器算法的精進等層面轉變。

篇(6)

一、關于一體化智能系統的構建分析

現階段,人工智能技術已逐漸在石油工程領域中取得了廣泛性應用,其中涉及到高層管理決策、采油工程、油井處理及鉆井油藏等相關內容,可有效解決石油工程開展期間存在不足之處,具體可將石油工程面臨問題分為以下幾種類型:第一,數據型問題。主要包括地震數據檢測、鉆孔曲線測量及油藏特征分析等方面內容,需得出準確性數據信息便于為其他工作開展提供切實可行參考依據[1];第二,優化型問題。具體是指通過地面設備的合理優化來大大提高石油產量;第三,公式型問題。主要包括鑒定識別、測井數據介紹及提高采收率等內容;第四,知識融合型問題。需要選出較為合理恰當實踐應用手段。總體來說,盡管智能化系統已逐步應用到石油工程中去,但卻因專業人士缺乏明顯創新想象力而無法達到最佳效果,并且智能系統還具備一定局限性特點,對石油工程實施效率提升有著不利影響。在這種情況下,為有效克服上述難題,就需石油工程工作人員能積極采用人工智能技術手段,徹底解決以往智能系統應用存在不足,借助科學合理分析方法對數據信息展開深入化分析探討,從而促使石油行業能夠順利發展。

二、石油工程領域中人工智能技術的應用分析

(一)油田地面設施系統模擬應用。在此以某區域油田資源為例,該油田共有700多口生產井,所有生產液體全部運送到三相分離設備中,并從分離設備中分離出適量高壓氣進入到管網結構中,并且周圍環境溫度還對設備工作效率有著直接影響,可以說是后期石油產量的主要影響因素之一。因此為有效解決這一問題,就需相關工作人員能積極構建智能模型結構,準確測量出石油工程地面系統實際運行情況,對分離設備產油量起到一定幫助作用。同時石油工程參與人員還應根據項目開況構建神經模型結構,著手于數據統計分析情況,主要包括鑒定識別和數字矩陣補孔兩點內容,隨后可綜合采用模糊聚類和變量分析方法對石油工程中涉及到的所有數據變量展開分析探討,充分考慮到各個變量可能對最終結果產生影響,防止數據信息出現較大變化情況。除此之外,模糊聚類還包含兩大優勢,分別是數據代表性和利用數據對研發模型進行檢驗等,往往該種方法主要適用于列串數據量低于30%情況下。

篇(7)

一、人工智能的定義

“人工智能”(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的。人工智能是指研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器。目前能夠用來研究人工智能的主要物質手段以及能夠實現人工智能技術的機器就是計算機,人工智能的發展歷史是和計算機科學與技術的發展史聯系在一起的。

人工智能理論進入21世紀,正醞釀著新的突破,人工智能的研究成果將能夠創造出更多更高級的智能“制品”,并使之在越來越多的領域超越人類智能,人工智能將為發展國民經濟和改善人類生活做出更大貢獻。

二、人工智能的應用領域

1.在管理系統中的應用

(1)人工智能應用于企業管理的意義主要不在于提高效率,而是用計算機實現人們非常需要做,但工業工程信息技術是靠人工卻做不了或是很難做到的事情。在《談談人工智能在企業管理中的應用》一文中劉玉然指出把人工智能應用于企業管理中,以數據管理和處理為中心,圍繞企業的核心業務和主導流程建立若干個主題數據庫,而所有的應用系統應該圍繞主題數據庫來建立和運行。換句話說,就是將企業各部門的數據進行統一集成管理,搭建人工智能的應用平臺,使之成為企業管理與決策中的關鍵因子。

(2)智能教學系統(ITS)是人工智能與教育結合的主要形式,也是今后教學系統的發展方向。信息技術的飛速發展以及新的教學系統開發模式的提出和不斷完善,推動人們綜合運用超媒體技術、網絡基礎和人工智能技術區開發新的教學系統,計算機智能教學系統就是其中的典型代表。計算機智能教學系統包含學生模塊、教師模塊,體現了教學系統開發的全部內容,擁有著不可比擬的優勢和極大的吸引力。

2.在工程領域的應用

(1)醫學專家系統是人工智能和專家系統理論和技術在醫學領域的重要應用,具有極大的科研和應用價值,它可以幫助醫生解決復雜的醫學問題,作為醫生診斷、治療的輔助工具。事實上,早在1982年,美國匹茲堡大學的Miller就發表了著名的作為內科醫生咨詢的Internist 2Ⅰ內科計算機輔助診斷系統的研究成果,由此,掀起了醫學智能系統開發與應用的。目前,醫學智能系統已通過其在醫學影像方面的重要作用,從而應用于內科、骨科等多個醫學領域中,并在不斷發展完善中。

(2)地質勘探、石油化工等領域是人工智能的主要作用發揮領地。1978年美國斯坦福國際研究所就研發制成礦藏勘探和評價專家系統“PROSPECTOR”,該系統用于勘探評價、區域資源估值和鉆井井位選擇等,是工業領域的首個人工智能專家系統,其發現了一個鉬礦沉積,價值超過1億美元。

3.在技術研究中的應用

(1)在超聲無損檢測(NDT)與無損評價(NDE)領域中,目前主要廣泛采用專家系統方法對超聲損傷(UT)中缺陷的性質、形狀和大小進行判斷和歸類;專家運用超聲無損檢測儀器,以其高精度的運算、控制和邏輯判斷力代替大量人的體力與腦力勞動,減少了任務因素造成的無擦,提高了檢測的可靠性,實現了超聲檢測和評價的自動化、智能化。

(2)人工智能在電子技術領域的應用可謂由來已久。隨著網絡的迅速發展,網絡技術的安全是我們關心的重點,因此我們必須在傳統技術的基礎上進行網絡安全技術的改進和變更,大力發展數據挖掘技術、人工免疫技術等高效的AI技術,開發更高級AI通用和專用語言,和應用環境以及開發專用機器,而與人工智能技術則為我們提供了可能性。

三、人工智能的發展方向

1.專家系統是目前人工智能中最活躍、最有成效的一個研究領域,它是一種具有特定領域內大量知識與經驗的程序系統。近年來,在“專家系統”或“知識工程”的研究中已出現了成功和有效應用人工智能技術的趨勢。人類專家由于具有豐富的知識,所以才能達到優異的解決問題的能力。那么計算機程序如果能體現和應用這些知識,也應該能解決人類專家所解決的問題,而且能幫助人類專家發現推理過程中出現的差錯,現在這一點已被證實。

2.智能信息檢索技術的飛速發展。人工智能在網絡信息檢索中的應用,主要表現在:(1)如何利用計算機軟硬件系統模仿、延伸與擴展人類智能的理論、方法和技術。(2)由于網絡知識信息既包括規律性的知識,如一般原理概念,也包括大量的經驗知識這些知識不可避免地帶有模糊性、隨機性、不可靠性等不確定性因素對其進行推理,需要利用人工智能的研究成果。

3.SOAr是一種通用智能體系結構,其始終處在人工智能研究的前沿,已顯示出強大的問題求解能力,它認為機器人的開發是人工智能應用的重要領域。在它的研究中突出4個概念:(1)所處的境遇機器人不涉及抽象的描述,而是處在直接影響系統的行為的境地。(2)具體化機器人有軀干,有直接來自周圍世界的經驗,他們的感官起作用后會有反饋。(3)智能的來源不僅僅是限于計算裝置,也是由于與周圍進行交互的動態決定。(4)浮現從系統與周圍世界的交互以及有時候系統的部件間的交互浮現出智能。目前,國內外不少學者都對機器人足球系統頗感興趣,足球機器人涉及機器人學、人工智能以及人工生命、智能控制等多個領域。足球機器人系統本身既是一個典型的多智能體系統,是一個多機器人協作自治系統,同時又為它們的理論研究和模型測試提供一個標準的實驗平臺。

參考文獻:

[1]元慧.議當代人工智能的應用領域和發展狀況[J].福建電腦,2008.

[2]劉玉然.談談人工智能在企業管理中的應用[J].價值工程,2003.

[3]焦加麟,徐良賢,戴克昌.人工智能在智能教學系統中的應用[J].計算機仿真,2003,(8).

[4]周明正.人工智能在醫學專家系統中的應用[J].科技信息, 2007.

[5]張海燕,劉鎮清.人工智能及其在超聲無損檢測中的應用[J].無損檢測,2001,(8).

篇(8)

中圖分類號:G642 文獻標識碼:B

1 引言

人工智能是計算機科學與技術學科類各專業重要的基礎課程,在信息類相關的許多高年級本科和研究生都開設了人工智能課程。人工智能是一門前沿性的學科,它主要研究計算機實現智能的基本原理和基本方法,同時人工智能也是一門多學科交叉的綜合學科,它涉及計算機科學、數學、心理學、認知科學等眾多領域。廣義的人工智能涵蓋了模式識別、機器學習、數據挖掘、計算智能、神經網絡、統計學習理論等眾多研究方向。人工智能作為計算機學科的重要分支,已成為人類在信息社會和網絡經濟時代所必須具備的一項核心技術,并將在未來發揮更大的作用。

由于人工智能課程的學習難度較大,內容更新比較快,也繁多,使得教學有一定的難度。特別是針對本科高年級的人工智能教學,由于本科生的研究意識相對較弱,而人工智能比較強調科研性,所以如何教好本科高年級的人工智能課程是一項非常具有挑戰性的任務。

本文通過分析本科高年級的教學特點和人工智能課程的自身特點,在如何提高教學質量這一問題上提出了幾點思考。

2 本科高年級的教學特點

中國的本科教育,由于歷史和經濟發展水平等諸多原因,目前的定位還是培養某方面專業人才的專才教育。本科高年級學生在完成了低年級公共基礎課程和部分專業基礎課程的學習之后,迫切希望了解本專業的應用領域和發展前景,所以在教學過程中要注意內容的應用性和專業性。另一方面,本科高年級學生也是研究生教育的儲備人才,在教學過程中要適時的進行科研引導,這樣能夠讓畢業生保持對科學的興趣,從而為研究生階段進一步深入研究打下基礎。本科生一般于4年級的10月份開始著手畢業設計,在本科高年級的教學過程中還要注意與畢業設計的內容相結合,這樣可以讓學生提前做好準備,選擇適合自己的方向。

3 人工智能課程的學科特點

與信息類其它專業課程相比,人工智能具有應用性、研究性和發展性三個重要學科特點。首先,人工智能是一門應用性很強的學科。人工智能學科的主要目標在于研究用機器來模仿和執行人腦的某些智力功能,并開發相關理論和技術。人工智能技術廣泛應用于模式識別、數據挖掘、智能控制、信息檢索、智能機器人等領域,在日常生活中,隨處可見人工智能技術的應用實例;其次,人工智能技術具有很強的研究價值,是計算機科學領域中重要的研究方向。技術進步無止境,研究者們不斷追求開發出效率更高、更智能的人工智能技術:最后,人工智能是一門正在發展中的學科。隨著信息化、計算機網絡和Internet技術的發展,人類已步入信息社會和網絡經濟的時代,它們為人工智能提出了許多新的研究目標和研究課題,人工智能的應用領域以及技術算法都在不斷發展。

4 人工智能教學的三點思考及對策

4.1 注重應用性和介紹性

在教學實踐中,筆者發現,本科高年級學生一般比較關心各種人工智能技術的應用領域和使用方法,而對基礎性理論和技術細節不是很感興趣。他們一方面希望能學到很多較新和較實用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老師的教學主要停留在介紹性層面,不想花太多時間在復雜的理論理解上。這也比較符合本科高年級的教學特點,本科階段主要是培養具備較強應用性和基礎科研素質的專業人才。傳統的人工智能教學主要講授知識表示和搜索推理技術,大部分實例都是解答式或推證式的。由于其知識的抽象性,又加之其應用實例較少,所以往往教師感覺難講,學生在學習過程中也感覺乏味,對講授的內容大多都是死記其方法和步驟,因此影響了教學效果。針對這一問題,筆者認為,在設計人工智能教學時,要注重內容的新穎性、實用性和介紹性。除了講授那些仍然有用的和有效的基本原理和方法之外,要著重介紹一些新的和正在研究的人工智能方法和技術,特別是近期發展起來的方法和技術,如支持向量機、決策樹、模糊集、遺傳算法、蟻群算法等。這些內容的理論部分可以不必過分深究,教學重點主要放在介紹每種技術的產生背景、發展狀況、應用領域和具體實現上。此外,要注意理論與實際應用密切結合,在教學過程中加入一些與課程內容結合的、可以用計算機實現的實際應用內容。考慮到目前應用最廣泛的人工智能領域之一是模式識別,而研究模式識別的主要計算機工具是Matlab,所以筆者在教學過程中以手寫數字識別作為教學實例,針對所介紹的每一種人工智能技術,都將其應用于手寫數字識別當中,并講解了這些技術的Matlab實現方法。學生在掌握了基本理論之后,可以按照實現步驟的指導,立刻上機見到算法的實際效果,加深對算法實現思路和方法的認識。

4.2 注重科研引導性

本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。本科教育一方面為社會培養了大批應用型人才,另一方面也要為我國的科研事業培養后備力量。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非常活躍的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。針對這一特點,在本科高年級的人工智能教學中,還要注意對學生適時適度的科研引導。這樣可以激發學生的研究興趣,樹立目標意識,找準研究方向,為未來的科研工作打下基礎。在教學過程中,可以引導學生思考每種人工智能技術的優點是什么?缺點是什么?有沒有改進的辦法?比如BP神經網絡是計算智能中較為成熟的技術,具有強大的非線性學習能力,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等。近十年來,研究者逐漸把目光轉移到另一種新的非線性學習工具――支持向量機上。同神經網絡相比,支持向量機具有泛化能力強、不受局部最小問題困擾、理論背景完善等顯著優點。在給學生講解BP神經網絡算法的時候,一方面可以通過手寫數字識別實驗展示其強大的非線性分類能力,另一方面也要告訴學生,BP神經網絡并不是完美的,其缺點同樣明顯。然后引導學生對這些問題進行思考,討論有沒有更好的解決辦法。此時,順勢引出支持向量機的內容,并且介紹支持向量機的研究現狀和研究方向。通過兩者的對比,學生不但了解到了較新的人工智能技術,又對人工智能研究中如何去發現問題、解決問題、人工智能技術的進化歷程有了直觀的印象。

4.3 教學內容與畢業設計相結合

篇(9)

人工智能是研究、開發用于模擬、延伸和擴展人的智能的理論、方法 技術及應用系統的一門新的技術科學。人工智能是計算機科學的一個分支 它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式作出反應的智能機器.該領域的研究包括機器人.語言識別、圖像識別 自然語言處理和專家系統等。電氣自動化是研究與電氣工程有關的系統運行、自動控制,電力電子技術、信息處理、試驗分析 研制開發以及電子與計算機應用等領域的一門學科。實現機械的自動化,讓機械部份脫離人類的直接控制和操作自動實現某些過程是電氣自動化和人工智能研究的交匯點。積極運用人工智能的新成果無疑有利于電氣自動化學科特別是自動控制領域的發展.也有利于提高電氣設各運行的智能化水平.對改造電氣設備系統,增強控制系統穩定性.加快生產效率都有重大意義。

1、人工智能應用理論分析

人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發用于模擬,延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能是計算機科學的一個分支,它企圖了解智能的實質.并生產出一種新的能以人類智能相似的方式作出反應的智能機器 該領域的研究包括機器人、語言識別、圖像識別 自然語言處理和專家系統等。自從1956年“人工智能 一詞在Dartmouth學會上提出以后,人工智能研究飛速發展,成為以計算機為主.涉及信息論.控制論, 自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學的一門學科。人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜的工作。

當今社會,計算機技術已經滲透到生產生活的方方面面.計算機編程技術的日新月異催生自動化生產,運輸 傳播的快速發展。人腦是最精密的機器,編程也不過是簡單的模仿人腦的收集、分析、交換、處理、回饋.所以模仿模擬人腦的機能將是實現自動化的主要途徑。電氣自動化控制是增強生產.流通、交換、分配等關鍵一環.實現自動化,就等于減少了人力資本投入,并提高了運作的效率。

2、人工智能控制器的優勢

不同的人工智能控制通常用完全不同的方法去討論。但Al控制器例如:神經、模糊、模糊神經以及遺傳算法都可看成一類非線性函數近似器。這樣的分類就能得到較好的總體理解.也有利于控制策略的統一開發。這些Al函數近似器比常規的函數估計器具有更多的優勢.這些優勢如下:

(1)它們的設計不需要控制對象的模型(在許多場合,很難得到實際控制對象的精確動態方程,實際控制對象的模型在控制器設計時往往有很多不確實性因素,例如:參數變化,非線性時,往往不知道)。

(2)通過適當調整(根據響應時間 下降時間、魯棒性能等)它們能提高性能。例如模糊邏輯控制器的上升時間比最優PID控制器快1.5倍 ,下降時間快3.5倍, 過沖更小。

(3)它們比古典控制器的調節容易。

(4)在沒有必須專家知識時.通過響應數據也能設計它們。

(5)運用語言和響應信息可能設計它們。

總而言之,當采用自適應模糊神經控制器、規則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現這個過程,但主要的目標是使用系統技術實現穩定的解,并且找到最簡單的拓樸結構配置.自學習迅速,收斂快速。

3、人工智能的應用現狀

隨著人工智能技術的發展,許多高等院校及科研機構就人工智能在電氣設備的應用方面展開了研究工作,如將人工智能用于電氣產品優化設計,故障預測及診斷、控制與保護等領域。

3.1 優化設計

電氣設備的設計是一項復雜的工作 它不僅要應用電路、電磁場、電機電器等學科的知識,還要大量運用設計中的經驗性知識。傳統的產品設計是采用簡單的實驗手段和根據經驗用手工的方式進行的.因此很難獲得最優方案。隨著計算機技術的發展,電氣產品的設計從手工逐漸轉向計算機輔助設計(CAD),大大縮短了產品開發周期。人工智能的引進.使傳統的CAD技術如虎添翼.產品設計的效率及質量得到全面提高。用于優化設計的人工智能技術主要有遺傳算法和專家系統。遺傳算法是一種比較先進的優化算法,非常適合于產品優化設計。因此電氣產品人工智能優化設計大部分采用此種方法或其改進方法。

3.2 故障診斷

電氣設備的故障與其征兆之間的關系錯綜復雜,具有不確定性及非線性.用人工智能方法恰好能發揮其優勢。已用于電氣設備故障診斷的人工智能技術有:模糊邏輯、專家系統、神經網絡。

變壓器由于在電力系統中的特殊地位而備受關注,有關方面的研究論文較多。目前對變壓器進行故障診斷最常用的方法是對變壓器油中分解的氣體進行分析.從而判斷變壓器的故障程度。人工智能故障診斷技術在發電機及電動機方面的研究工作也較為活躍。

3.3智能控制

人工智能控制技術在自動控制領域的研究與應用已廣泛展開.但在電氣設備控制領域所見報道不多。可用于控制的人工智能方法主要有3種:模糊控制、神經網絡控制、專家系統控制。由于模糊控制是其中最為簡單、最具實際意義的方法.因而它的應用實例最多。

4、結語

人類智能主要包括三個方面.即感知能力.思維能力 行為能力。而人工智能是指由人類制造出來的 機器”所表現出來的智能。人工智能主要包括感知能力、思維能力和行為能力。人工智能的應用體現在問題求解.邏輯推理與定理證明,自然語言理解 自動程序設計.專家系統,機器人學等方面,而這諸多方面都體現了一個自動化的特征.表達了一個共同的主題,即提高機械人類意識能力,強化控制自動化.因此人工智能在電氣自動化領域將會大有作為,電氣自動化控制也需要人工智能的參與。

篇(10)

2017年9月,依圖醫療表示,浙江省人民醫院作為依圖醫療的首批合作醫院,從上線至今,AI系統一共輔助醫生診閱1.7萬名患者圖像,被采納率為90%;

在全球各個地方,醫療人工智能發展到今天,已經不是僅僅是一種創新的概念,基于人工智能技術研發的各種產品已經切切實實的為醫生、患者、企業、醫療機構提供服務。

各個國家和地區看到人工智能的巨大前景,紛紛出臺政策、投入資金加快布局速度。人們戲稱人工智能的“軍備競賽”悄然來臨。在全球的各個國家和地區中,美國、中國、歐洲是在醫療人工智能表現最搶眼的三個區域。

文無第一、武無第二,動脈網從醫療應用的角度梳理一下這三個區域的醫療人工智能發展現狀,看看誰才是醫療人工智能領域的領跑者。

人才

上一篇: 增值稅納稅籌劃論文 下一篇: 人性化管理論文
相關精選
相關期刊
久久久噜噜噜久久中文,精品五月精品婷婷,久久精品国产自清天天线,久久国产一区视频
在线人成亚洲播放网站 | 中文字幕精品乱码亚洲一区 | 亚洲视频一区二区在线观看 | 自拍偷亚洲产在线观看 | 在线不卡日本v一区v二区 | 一区二区三区在线|欧黑人 亚洲第一国产综合 |