光通信論文匯總十篇

時間:2023-03-16 15:24:50

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇光通信論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

光通信論文

篇(1)

早在30多年前,自由空間光通信曾掀起了研究的熱潮,但當時的器件技術、系統技術和大氣信道光傳輸特性本身的不穩定性等諸多客觀因素卻阻礙了它的進一步發展。與此同時,隨著光纖制作技術、半導體器件技術、光通信系統技術的不斷完善和成熟,光纖通信在20世紀80年代掀起了熱潮,自由空間光通信一度陷入低谷。然而,隨著骨干網的基本建成以及最后一公里問題的出現,以及近年來大功率半導體激光器技術、自適應變焦技術、光學天線的設計制作及安裝校準技術的發展和成熟,自由空間光通信的研究重新得到重視。

在國外,FSO系統主要在美英等經濟和技術發達的國家生產和使用。到目前為止,FSO己被多家電信運營商應用于商業服務網絡,比較典型的有Terabeam和Airfiber公司。在悉尼奧運會上,Terabeam公司成功地使用FSO設備進行圖像傳送,并在西雅圖的四季飯店成功地實現了利用FSO設備向客戶提供10OMb/s的數據連接。該公司還計劃4年內在全美建設100個FSO城市網絡。而Airfiber公司則在美國波士頓地區將FSO通信網與光纖網(SONET)通過光節點連接在一起,完成了該地區整個光網絡的建設。

目前商用的FSO系統(見圖1)通常采用光源直接輸出、光電探測器直接耦合的方式,這種系統有以下幾點缺點:

(l)半導體激光器出射光束在水平方向和垂直方向的發散角不同,且出射光斑較粗,因此我們需要先將出射光束整形為圓高斯光束再準直擴束后發射,這樣發射端的光學系統就較為復雜,體積也會相應增大。

(2)在接收端,光斑經光學天線會聚之后直接送入PD轉化為電信號。通常,我們需要提供點到點的,雙向的通信系統,這樣,FSO系統的每個終端都包括了激光器,探測器,光學系統,電子元器件和其中有源器件所需要的電源。這種系統的體積通常比較大,重量大,成本也比較高。從FSO系統終端的內部結構圖中可以看出,完成一個簡單的點到點的鏈路需要6個OE轉換單元。隨著人們對帶寬的需求越來越高,PD的成本也越來越高,6個OE轉換單元大大增加了成本閉。

(3)FSO終端設備一般安裝于樓頂,如果終端中含有大量的有源設備,會給我們的安裝帶來了很多不方便。

(4)系統的可擴展性很小。如果用戶所需要的帶寬增加,那么封裝在一起的整個FSO系統終端都需要被新的終端取代,安裝新設備的過程需要再次對準,整個升級過程所需要的時間很長,給人們帶來巨大的損失。

1.2基于光纖耦合技術的FSO系統

光纖輸出、光纖輸入的自由空間光通信系統(見圖2),激光器輸出的高斯光束耦合至光纖再經準直出射,傳輸一定距離后,光束通過合適的聚焦光學系統聚焦在光纖纖芯上,沿著光纖傳輸后經PD接收還原信號。這樣我們通過在發射和接收端都采用光纖連接的方式,只需要在樓頂放置光學天線系統,而將其他的控制系統通過光纖放置于室內就可以實現點到點的連接,整個系統結構簡單,易于安裝。

這種新型的FSO系統具有以下優點:①減少了不必要的E一O轉換,一條鏈路現在只需要2個OE接口即可,大大降低了成本。②光學系統較為簡單,光纖出射的光束一般為圓高斯光,不需要整形,簡化了光學系統,減小了體積,易于安裝。③易于升級及維護,當用戶的帶寬增加時,我們只需要對放置在室內的系統進行升級即可,免去了復雜繁瑣的對準過程。④基于光纖耦合的空間光通信系統能夠很好的與現有的光纖通信網絡結合,利用現有的比較成熟的光纖通信系統中的器件如發射接收模塊,EDFA和WDM中所用到的復用器和解復用器。⑤可以與光碼分多址復用技術(OCDMA)相結合,構成自由空間OCDMA系統,進一步擴大系統的帶寬。

對于一個基于光纖耦合技術的FSO系統而言,以下2個因素必不可少:①體積小,重量輕的光學天線系統一個最佳的光學天線的設計首先必須使盡可能多的光耦合進單模光纖,獲得最大的耦合效率;其次要能通過粗跟蹤系統測出入射光的角度;另外,必須滿足盡可能高的通信速率和穩定性。②性能良好的跟蹤系統要使光學接收天線接收到的光能夠有效的耦合進纖芯和數值孔徑都極小的單模光纖,我們必須為系統加上雙向的跟蹤系統。

2國內空間光通信系統研究現狀和進展

我國衛星間光通信研究與歐、美、日相比起步較晚。國內開展衛星光通信的單位主要有哈爾濱工業大學(系統模擬和關鍵技術研究)、清華大學(精密結構終端和小衛星研究)、北京大學(重點研究超窄帶濾波技術)和電子科技大學(側重于APT技術研究)。目前已完成了對國外研究情況的調研分析,進行了星間光通信系統的計算機模擬分析及初步的實驗室模擬實驗研究,大量的關鍵技術研究正在進行,與國外相比雖有一定的差距,但近些年來在光通信領域也取得了一些顯著的成就。

2002年哈爾濱工業大學成功地研制了國內首套綜合功能完善的激光星間鏈路模擬實驗系統,該系統可模擬衛星間激光鏈路瞄準、捕獲、跟蹤、通信及其性能指標的測試。所研制的激光星間鏈路模擬實驗系統的綜合功能、衛星平臺振動對光通信系統性能的影響及對光通信關鍵單元技術的攻關研究有創新性,其技術水平為國內領先,達到國際先進水平,目前該項研究已進入工程化研究階段。上海光機所研制出了點對點155M大氣激光通信機樣機,該所承擔的“無線激光通信系統”項目也在2003年1月份通過了驗收,該系統具有雙向高速傳輸和自動跟蹤功能,其傳輸速率可達622Mb/s,通信距離可以達到2km,自動跟蹤系統的跟蹤精度為0.1mrad,響應時間為0.2s。中科院成都光電所于2004年在國內率先推出了10M碼率、通信距離300m的點對點國產激光無線通信機商品。桂林激光通信研究所也在2003年正式推出FSO商品,最遠通信距離可達8km,速率為10~155M。武漢大學于2006年在國內首先完成42M多業務大氣激光通信試驗,2007年3月又在國內率先完成全空域FSO自動跟蹤伺服系統試驗,這為開發機載、星載激光通信系統和地面帶自動目標捕獲功能的FSO系統創造了條件。另外在光無線通信系統設計、以太網光無線通信、USB接口光無線通信、大氣激光傳輸、大氣光通信收發模塊和信號復接/分接技術等方面都取得了多項成果。

3自由空間光通信技術的應用與未來發展趨勢

自由空間光通信和其他無線通信相比,具有不需要頻率許可證、頻率寬、成本低廉、保密性好,低誤碼率、安裝快速、抗電磁干擾,組網方便靈活等優點。正是由于這些特點,FSO系統正受到電信運營商越來越多的關注與青睞。對于有線運營商,FSO可以在城域光網之外提供高帶寬連接,而其成本只有地下埋設光纜的五分之一,而且不需要等6個月才能拿到施工許可證。對于無線運營商,在昂貴的E1/T1租用線路和帶寬較低的微波解決方案之外,FSO在流量回輸方面提供了一個經濟的替代選擇。在目前這個競爭激烈的環境中,FSO無疑為電信運營商以較低的成本加速網絡部署,提高“服務速度”并降低網絡操作費用提供了可能。而且FSO技術結合了光纖技術的高帶寬和無線技術的靈活、快速部署的特性,可以在接入層等近距離高速網的建設中大有用武之地,在目前許多企業和機構都不具備光纖線路,但又需要較高速率(如STM-1或更高)的情況下,FSO不失為一種解決“最后一公里”瓶頸問題的有效途徑。

FSO產品目前最高速率可達2.5G,最遠可傳送4km,在本地網和邊緣網等近距離高速網的建設中大有用武之地,主要應用于一些不宜布線或是布線成本高、施工難度大、經市政部門審批困難的地方,如市區高層建筑物之間、公路(鐵路)兩側的建筑物之間、不易架橋的河流兩岸之間、古建筑、高山、島嶼以及沙漠地帶等。另外,FSO設備也可用于移動基站的環路建設、場所比較分散的企業局域網子網之間的連接和應急通信。對于銀行、證券、政府機關等需要穩定服務的商業應用來說,FSO產品可以作為預防服務中斷的光纖備份設備。

當然,FSO在應用過程中也存在一定的瓶頸,主要是會受到大氣狀況或物理障礙的影響,比如其光束在傳輸中極易受大霧等惡劣天氣,物理阻隔或建筑物的晃動/地震的影響。在惡劣的天氣下,光束傳輸的距離會下降,從而降低通信的可靠性,嚴重的甚至會造成通信中斷。

盡管存在不少問題,但自由空間光通信的技術優勢更為明顯,其自身的特點決定了在一定的環境下,它可以最大發揮自身優勢,比如可以用于不便鋪設光纖的地方和不適宜使用微波的地方;又由于光纖成本過高,用戶無法在短期內實現光纖接入,而他們卻渴望享受寬帶接入帶來的便利,結合我國現階段寬帶網絡的實際情況——許多企業和機構都不具備光纖線路,但又需要較高速率(如STM-1或更高),FSO不失為一種解決“最后一公里”瓶頸問題的有效途徑。FSO系統解決了寬帶網絡的“最后一公里”的接入,實現了光纖到桌面,完成語音、數據、圖像的高速傳輸,拉動了聲訊服務業和互動影視傳播,實現了“三網融合”,有利于電子政務、電子商務、遠程教育及遠程醫療的發展,并產生了巨大的效益,具有廣闊的應用領域和市場前景。

參考文獻:

[1]ZHUX,KAHNJM.Freespaceopticalcommunicationthroughatmo-sphericturbulencechannels[J].IEEETransactionsonCommunications,2002,50(8):1293-1300.

[2]蔣麗娟.無線光通信技術及其應用[C].全國第十二次光纖通信學術會議論文集.2004,10.

[3]張英海,霍澤人,王宏鋒等.自由空間光通信的現狀與發展趨勢[J].中國數據通信,2004,6,(12).

[4]程莉.自由空間光通信技術[J].現代電子技術,2004,27,(5).

篇(2)

不同像差單獨作用時

先來考查傾斜、離焦、彗差及像散這4種像差對系統可靠性的影響。把表1的數據代入(13)式,并對傾斜、離焦、彗差及像散的像差進行歸一化處理,即令W1x,W20,W31,W22分別除以λ,以此作為自變量,依次把(9)~(12)式代入(13)式進行運算,并對所得誤碼率進行以10為底的對數變換,得到圖1和表2所示的像差與誤碼率關系。

圖1橫坐標表示歸一化的像差系數,縱坐標是取對數后的誤碼率。從圖看到,對于星間相干光通信接收系統其可靠性容易受各種像差的影響。從圖1兩坐標軸的起點和表2第1列數據可以看到,在表1設定的參數下,在沒有像差的影響的情況下,系統最小誤碼率接近10-8;當有像差時,從圖中4條曲線并比較表格第2~5行的數據,可以看到,接收系統的誤碼率隨著像差的增加而遞增,其中傾斜像差對接收系統誤碼率的影響最大,離焦和彗差相當,而像散的影響最小。若以εBER≤10-6為標準,系統能承受的最大傾斜像差W1x僅為0.2λ,最大離焦W20及彗差W31大約為0.32λ,最大像散W22不超過0.41λ。可能的原因是:系統一旦有傾斜像差,信號光束將完全偏離焦點,它與本振光束所形成的有效混頻區域銳減,從而混頻效率急降,使誤碼率快速攀升。離焦像差將使信號光束的聚焦光斑沿光軸在焦點前后變動,從而改變焦點處的光斑質量,影響它與本振光斑在焦點處的混頻效果,使誤碼率上升;與傾斜像差導致的混頻面積減少相比,這種信號光束聚焦特性的劣變是溫和的,所以離焦像差對系統可靠性的影響比傾斜像差小。另外,考慮到接收光學系統已經進行過高階像差的優化設計,且采取了抗擾動措施,所以彗差與像散的影響將更小,這也從側面說明優化設計后的系統無需考慮更高階像差的影響。

像差間的相互校正

根據文獻[7],傾斜像差與彗差之間、離焦與像散之間具有部分校正效應,接下來將進行比較分析。此時把(11)式改寫成(14)式,而(12)式改寫成(15)式。把(14),(15)式分別代入(13)式,并采用歸一化像差系數,令W31/λ和W22/λ分別取:0.00,0.25,0.50,0.75,1.00,得到圖2,3和表3,4所示結果。

圖2表示傾斜像差與彗差之間的校正效果。以εBER≤10-6為標準,當傾斜像差W1x/λ=0,從縱坐標軸上看,彗差W31/λ=0.50時,系統的誤碼率接近10-4,已超出標準2個數量級;當W31/λ=1.00時,誤碼率更是接近10-2。所以,若對彗差不進行校正,隨著其數值的增大,誤碼率呈指數增長。但是,從圖2也可看到,對于歸一化的彗差W31/λ,可以通過調整歸一化的傾斜像差W1x/λ來部分校正,從而降低系統誤碼率,提升系統可靠性。譬如,同樣是W31/λ=0.50,但只要調整W1x,使W1x/λ大致在-0.34~-0.24之間,則可以維持誤碼率εBER≤10-6。不僅如此,從圖2來看,即便W31/λ=1.00,只要W1x/λ大致在-0.44~-0.66之間,誤碼率依然可以小于等于10-6,而此時若不進行校正,誤碼率已接近10-2。因此,當W31/λ≤1.00時,為了保證系統誤碼率εBER≤10-6,通過調整W1x,傾斜像差與彗差之間能實現部分相互校正。

表3給出了通過調整傾斜來校正彗差而提升系統誤碼性能的效果。觀察第4~7行,單獨看每行時,發現隨著歸一化傾斜像差系數-W1x/λ絕對值的遞增,誤碼率會經歷變小、穩定、再變大的過程,這正是傾斜對彗差校正的體現,且對于不同取值的彗差,有相應的最佳傾斜調整參數,譬如當W31/λ=0.25時,令-W1x/λ=0.16,系統誤碼率由補償前的10-6.7降低至最小值10-7.7,系統誤碼性能提升一個數量級;而比較第4、5、6、7行的數據,可以看到,隨著彗差的增大,傾斜對其校正效果越來越弱。

回顧(8)與(14)式,可以發現,彗差W31ρ3cosθ(其中W31=W131H)與x方向性的傾斜W1xρcosθ具有相似性。對于相同的θ,若令ρ取1,則彗差由W31決定,而傾斜由W1x決定,因此,只要兩者取值相反,便能相互抵消,從而提高混頻效率,降低誤碼率。對于W1yρcosθ有相同的結論。

篇(3)

一、光通信傳輸網絡四種不同技術的比較分析

1.業務承載能力

(1)OTN技術

采用基于TDM體制的復用技術,每路信號占用在時間上固定的比特位組,信道通過位置進行標識,有獨特的幀結構,可區分不同等級速率,并能在同一網絡中綜合不同的網絡傳輸協議,對實時性業務及非實時性業務都能提供相應承載,實現了從窄帶到寬帶的綜合業務傳輸。

傳輸設備可以直接提供工業標準的通信協議接口,而不需借助接入設備。

各種通信業務應用可直接接入OTN,無需接入設備,可以支持語音。圖像信號的多點廣播,采用數字圖像壓縮(M-JPEG和H.264)和圖像矩陣交換技術。

OTN設備簡單、組網靈活、集中維護方便,國內外地鐵工程中應用廣泛,其不足是設備獨家生產,售后服務對原設備廠商依賴大,兼容性差,與非OTN網絡連接能力較弱。

(2)ATM技術

ATM雖然可以承載實時性業務中的時分復用業務,但每一個節點的延時都要大于SDH傳輸制式,特別是故障時系統切換時間較SDH傳輸制式長(有時甚至以秒計),所以ATM技術一般不用于時分復用業務的承載。另外,ATM沒有低速率接口,需增加接入設備,設備價格高且協議復雜。對于視頻業務,由于其具有很高的突發度,而ATM恰恰能夠很好地支持具有突發性的可變比特率業務,并且其固有的設計已經充分考慮了業務QOS(服務質量)問題,因此可以實現承載。

然而對于非實時性業務的傳輸,ATM存在帶寬利用率較低的問題,且沒有音頻等低速接口,需設接入設備。

(3)SDH及基于SDH的多業務傳送平臺(MSTP)

SDH是最適合實時性業務中時分復用業務的承載技術,但無法解決實時性業務中視頻信號和實時性業務及非實時性業務中以太網的傳輸問題。SDH接口種類單一,僅具有PDH系列標準接口(E1/E3/STM-le)。傳輸窄帶業務(話音、數據、寬帶音頻)時,需增加接入設備(PCMD/l設備);無直接的視頻和LAN接口,需外部增加視頻CODEC和Ethernet路由器;對Ethernet業務,一般只提供ZMb/s的傳輸帶寬,存在性能瓶頸;對廣播音頻業務,僅提供3kHz的傳輸帶寬,難以滿足高保真的廣播效果;一般只提供點對點的通信信道,難以滿足大量共線式通信信道的要求。

同時SDH只能向用戶提供固定速率的信道,不能動態分配帶寬,不能進行統計復用,對總線型寬帶數據業務及圖像業務的支持困難。

MSTP克服了SDH設備中的一些不足,隨著技術不斷的發展成熟,越來越適合各種通業務的承載,但仍需增加接入設備。

(4)RPR

對于實時性時分復用業務,RPR技術雖然定義了協議,但需在實際中得到進一步驗證。

對于數據業務,RPR具備絕對的優勢,可根據用戶需求分配帶寬,支持空間復用技術和統計復用技術,在網絡正常運營的情況下,可使帶寬利用率相對SDH網絡提高3-4倍。RPR還可對數據業務進行優化,有效支持IP的突發特性。

對于有實時性要求的數據業務,RPR可以提供不同等級的服務和基于不同等級業務的環保護功能來保障數據業務的實時性,在保障實時性方面和故障倒換時間(16ms-50ms)上可與SDH技術媲美,而在帶寬利用率上比SDH傳輸數據業務大大提高。特別是它對視頻業務的承載,目前數據視頻監控市場的主流設備提供商,都將其系統構建在基于IP的MPEGZ編碼和壓縮技術,以及基于IP的視頻數據存儲、檢索和訪問控制技術上,這些系統所采用的攝像頭基本上都可以直接提供MPEGZ編碼及以太網數據端口,因此,由RPR技術來承載視頻監控系統,用戶數據能繼續保持以太網幀格式,省略復雜的映射過程,并對用戶分組進行嚴格的服務質量等級分類;并能提供嚴格的延時和抖動保障機制,視頻圖像清晰、畫面流暢,完全達到高速鐵路/公路監控圖像的要求。但業務接口同SDH、MSTP、ATM、IP一樣,必須借助于接入設備來提供低速數據接口。

2.帶寬利用率

OTN:開銷<2%,帶寬利用率較高。

ATM:開銷約為12.8%,帶寬利用率低。

SDH:開銷占3.7%,但由于其需預留保護帶寬,帶寬利用率較低。

RPR:開銷占3.7%,同時采用統計空間復用技術,使帶寬利用率大大提高。

3.環網保護能力、可靠性

OTN:采用雙環設計網絡,具有自愈保護功能,并且保護倒換時間小于50ms。

ATM:主要進行VC保護。

SDH及MSTP的網絡:具有強大的保護恢復能力,并且保護倒換時間小于50ms。

RPR:網絡具有強大的保護恢復能力,并且保護倒換時間小于50ms。

4.成熟度及發展前景

OTN:國內軌道交通領域已得到較多運用,但油田和長輸管線比較少,作為西門子的專利技術比較成熟,在專網需求方面能夠予以專屬研發和更新,發展速度較快。

ATM:技術、設備復雜,隨著IP技術的發展,IP質量保證問題的解決,對ATM技術應用帶來較大沖擊,其發展前景不好。

SDH及MSTP:SDH技術很成熟,有著廣泛的應用基礎;MSTP是在SDH基礎上發展起來的,目前還在不斷完善,功能越來越強。

RPR:目前還未得到較大規模的應用,需在實踐中進行驗證,但其技術先進,發展前景好。

二、光通信傳輸網絡在油氣田和長輸管線上的應用

通過上述對比可以看出,四種技術各有優劣,應用在油氣田和長輸管道上,應綜合考慮工程實際,合理優化,選擇適合油氣田和長輸管道傳輸技術發展方向的技術或技術組合,極大地提高效率,降低成本。

篇(4)

(一)復用技術

光傳輸系統中,要提高光纖帶寬的利用率,必須依靠多信道系統。常用的復用方式有:時分復用(TDM)、波分復用(WDM)、頻分復用(FDM)、空分復用(SDM)和碼分復用(CDM)。目前的光通信領域中,WDM技術比較成熟,它能幾十倍上百倍地提高傳輸容量。

(二)寬帶放大器技術

摻餌光纖放大器(EDFA)是WDM技術實用化的關鍵,它具有對偏振不敏感、無串擾、噪聲接近量子噪聲極限等優點。但是普通的EDFA放大帶寬較窄,約有35nm(1530~1565nm),這就限制了能容納的波長信道數。進一步提高傳輸容量、增大光放大器帶寬的方法有:(1)摻餌氟化物光纖放大器(EDFFA),它可實現75nm的放大帶寬;(2)碲化物光纖放大器,它可實現76nm的放大帶寬;(3)控制摻餌光纖放大器與普通的EDFA組合起來,可放大帶寬約80nm;(4)拉曼光纖放大器(RFA),它可在任何波長處提供增益,將拉曼放大器與EDFA結合起來,可放大帶寬大于100nm。

(三)色散補償技術

對高速信道來說,在1550nm波段約18ps(mmokm)的色散將導致脈沖展寬而引起誤碼,限制高速信號長距離傳輸。對采用常規光纖的10Gbit/s系統來說,色散限制僅僅為50km。因此,長距離傳輸中必須采用色散補償技術。

(四)孤子WDM傳輸技術

超大容量傳輸系統中,色散是限制傳輸距離和容量的一個主要因素。在高速光纖通信系統中,使用孤子傳輸技術的好處是可以利用光纖本身的非線性來平衡光纖的色散,因而可以顯著增加無中繼傳輸距離。孤子還有抗干擾能力強、能抑制極化模色散等優點。色散管理和孤子技術的結合,凸出了以往孤子只在長距離傳輸上具有的優勢,繼而向高速、寬帶、長距離方向發展。

(五)光纖接入技術

隨著通信業務量的增加,業務種類更加豐富。人們不僅需要語音業務,而且高速數據、高保真音樂、互動視頻等多媒體業務也已得到用戶青睞。這些業務不僅要有寬帶的主干傳輸網絡,用戶接人部分更是關鍵。傳統的接入方式已經滿足不了需求,只有帶寬能力強的光纖接人才能將瓶頸打開,核心網和城域網的容量潛力才能真正發揮出來。光纖接入中極有優勢的PON技術早就出現了,它可與多種技術相結合,例如ATM、SDH、以太網等,分別產生APON、GPON和EPON。由于ATM技術受到IP技術的挑戰等問題,APON發展基本上停滯不前,甚至走下坡路。但有報道指出由于ATM交換在美國廣泛應用,APON將用于實現FITH方案。GPON對電路交換性的業務支持最有優勢,又可充分利用現有的SDH,但是技術比較復雜,成本偏高。EPON繼承了以太網的優勢,成本相對較低,但對TDM類業務的支持難度相對較大。所謂EPON就是把全部數據裝在以太網幀內傳送的網絡技術。現今95%的局域網都使用以太網,所以選擇以太網技術應用于對IP數據最佳的接入網是很合乎邏輯的,并且原有的以太網只限于局域網,而且MAC技術是點對點的連接,在和光傳輸技術相結合后的EPON不再只限于局域網,還可擴展到城域網,甚至廣域網,EPON眾多的MAC技術是點對多點的連接。另外光纖到戶也采用EPON技術。

二、光纖通信技術的發展趨勢

對光纖通信而言,超高速度、超大容量、超長距離一直都是人們追求的目標,光纖到戶和全光網絡也是人們追求的夢想。

(一)光纖到戶

現在移動通信發展速度驚人,因其帶寬有限,終端體積不可能太大,顯示屏幕受限等因素,人們依然追求陸能相對占優的固定終端,希望實現光纖到戶。光纖到戶的魅力在于它有極大的帶寬,它是解決從互聯網主干網到用戶桌面的“最后一公里”瓶頸現象的最佳方案。隨著技術的更新換代,光纖到戶的成本大大降低,不久可降到與DSL和HFC網相當,這使FITH的實用化成為可能。據報道,1997年日本NTT公司就開始發展FTTH,2000年后由于成本降低而使用戶數量大增。美國在2002年前后的12個月中,FTTH的安裝數量增加了200%以上。在我國,光纖到戶也是勢在必行,光纖到戶的實驗網已在武漢、成都等市開展,預計2012年前后,我國從沿海到內地將興起光纖到戶建設。可以說光纖到戶是光纖通信的一個亮點,伴隨著相應技術的成熟與實用化,成本降低到能承受的水平時,FTTH的大趨勢是不可阻擋的。

(二)全光網絡

傳統的光網絡實現了節點間的全光化,但在網絡結點處仍用電器件,限制了目前通信網干線總容量的提高,因此真正的全光網絡成為非常重要的課題。全光網絡以光節點代替電節點,節點之間也是全光化,信息始終以光的形式進行傳輸與交換,交換機對用戶信息的處理不再按比特進行,而是根據其波長來決定路由。全光網絡具有良好的透明性、開放性、兼容性、可靠性、可擴展性,并能提供巨大的帶寬、超大容量、極高的處理速度、較低的誤碼率,網絡結構簡單,組網非常靈活,可以隨時增加新節點而不必安裝信號的交換和處理設備。當然全光網絡的發展并不可能獨立于眾多通信技術,它必須要與因特網、ATM網、移動通信網等相融合。目前全光網絡的發展仍處于初期階段,但已顯示出良好的發展前景。從發展趨勢上看,形成一個真正的、以WDM技術與光交換技術為主的光網絡層,建立純粹的全光網絡,消除電光瓶頸已成未來光通信發展的必然趨勢,更是未來信息網絡的核心,也是通信技術發展的最高級別,更是理想級別。

篇(5)

目前國內光纖光纜的生產能力過剩,供大于求。特種光纖如FTTH用光纖仍需進口,但總量不大,國內生產光纖光纜價格與國際市場沒有差別,成本無法再降,已經是零利潤,在國際市場沒有太強競爭力,出口量很小。二十年來的光技術的兩個主要發展,WDM和PON,這兩個已經相對比較成熟。多業務傳輸發展平臺兩個方面,一方面是更有效承載以太網業務、數據業務,另一方面是向業務方面發展。AS0N的現狀是目前的系統只是在設備中,或是在網絡中實現了一些功能,但是一些核心作用還沒有達到。

二、光纖通信技術的趨勢及展望

目前在光通信領域有幾個發展熱點即超高速傳輸系統、超大容量WDM系統、光傳送聯網技術、新一代的光纖、IPoverOptical以及光接入網技術。

(一)向超高速系統的發展

目前10Gbps系統已開始大批量裝備網絡,主要在北美,在歐洲、日本和澳大利亞也已開始大量應用。但是,10Gbps系統對于光纜極化模色散比較敏感,而已經鋪設的光纜并不一定都能滿足開通和使用10Gbps系統的要求,需要實際測試,驗證合格后才能安裝開通。它的比較現實的出路是轉向光的復用方式。光復用方式有很多種,但目前只有波分復用(WDM)方式進入了大規模商用階段,而其它方式尚處于試驗研究階段。

(二)向超大容量WDM系統的演進

采用電的時分復用系統的擴容潛力已盡,然而光纖的200nm可用帶寬資源僅僅利用率低于1%,還有99%的資源尚待發掘。如果將多個發送波長適當錯開的光源信號同時在一級光纖上傳送,則可大大增加光纖的信息傳輸容量,這就是波分復用(WDM)的基本思路。基于WDM應用的巨大好處及近幾年來技術上的重大突破和市場的驅動,波分復用系統發展十分迅速。目前全球實際鋪設的WDM系統已超過3000個,而實用化系統的最大容量已達320Gbps(2×16×10Gbps),美國朗訊公司已宣布將推出80個波長的WDM系統,其總容量可達200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。實驗室的最高水平則已達到2.6Tbps(13×20Gbps)。預計不久的將來,實用化系統的容量即可達到1Tbps的水平。

(三)實現光聯網

上述實用化的波分復用系統技術盡管具有巨大的傳輸容量,但基本上是以點到點通信為基礎的系統,其靈活性和可靠性還不夠理想。如果在光路上也能實現類似SDH在電路上的分插功能和交叉連接功能的話,無疑將增加新一層的威力。根據這一基本思路,光光聯網既可以實現超大容量光網絡和網絡擴展性、重構性、透明性,又允許網絡的節點數和業務量的不斷增長、互連任何系統和不同制式的信號。

由于光聯網具有潛在的巨大優勢,美歐日等發達國家投入了大量的人力、物力和財力進行預研,特別是美國國防部預研局(DARPA)資助了一系列光聯網項目。光聯網已經成為繼SDH電聯網以后的又一新的光通信發展。建設一個最大透明的、高度靈活的和超大容量的國家骨干光網絡,不僅可以為未來的國家信息基礎設施(NJJ)奠定一個堅實的物理基礎,而且也對我國下一世紀的信息產業和國民經濟的騰飛以及國家的安全有極其重要的戰略意義。

(四)開發新代的光纖

傳統的G.652單模光纖在適應上述超高速長距離傳送網絡的發展需要方面已暴露出力不從心的態勢,開發新型光纖已成為開發下一代網絡基礎設施的重要組成部分。目前,為了適應干線網和城域網的不同發展需要,已出現了兩種不同的新型光纖,即非零色散光(G.655光纖)和無水吸收峰光纖(全波光纖)。其中,全波光纖將是以后開發的重點,也是現在研究的熱點。從長遠來看,BPON技術無可爭議地將是未來寬帶接入技術的發展方向,但從當前技術發展、成本及應用需求的實際狀況看,它距離實現廣泛應用于電信接入網絡這一最終目標還會有一個較長的發展過程。

(五)IPoverSDH與IpoverOptical

以lP業務為主的數據業務是當前世界信息業發展的主要推動力,因而能否有效地支持JP業務已成為新技術能否有長遠技術壽命的標志。目前,ATM和SDH均能支持lP,分別稱為IPoverATM和IPoverSDH兩者各有千秋。但從長遠看,當IP業務量逐漸增加,需要高于2.4吉位每秒的鏈路容量時,則有可能最終會省掉中間的SDH層,IP直接在光路上跑,形成十分簡單統一的IP網結構(IPoverOptical)。三種IP傳送技術都將在電信網發展的不同時期和網絡的不同部分發揮自己應有的歷史作用。但從面向未來的視角看。IPoverOptical將是最具長遠生命力的技術。特別是隨著IP業務逐漸成為網絡的主導業務后,這種對JP業務最理想的傳送技術將會成為未來網絡特別是骨干網的主導傳送技術。

(六)解決全網瓶頸的手段一光接入網

近幾年,網絡的核心部分發生了翻天覆地的變化,無論是交換,還是傳輸都己更新了好幾代。不久,網絡的這一部分將成為全數字化的、軟件主宰和控制的、高度集成和智能化的網絡,而另一方面,現存的接入網仍然是被雙絞線銅線主宰的(90%以上)、原始落后的模擬系統。兩者在技術上存在巨大的反差,制約全網的進一步發展。為了能從根本上徹底解決這一問題,必須大力發展光接入網技術。因為光接入網有以下幾個優點:(1)減少維護管理費用和故障率;(2)配合本地網絡結構的調整,減少節點,擴大覆蓋;(3)充分利用光纖化所帶來的一系列好處;(4)建設透明光網絡,迎接多媒體時代。

參考文獻:

[1]趙興富,現代光纖通信技術的發展與趨勢.電力系統通信[J].2005(11):27-28.

篇(6)

2光孤子通信

在光纖通信系統中,由于光纖存在損耗和色散,從而使傳輸容量和距離在很大程度上都受到了限制。光孤子通信的出現極其有效的解決了光纖色散問題。所謂光孤子通信是在光纖長距離傳輸中,用光孤子超短光脈沖做信息載波,信號的波形和速率始終保持不變,并且可以到近零誤碼率信息傳遞的通信方式。

3光纖通信技術的發展趨勢

3.1超大容量、超長距離傳輸技術

WDM雖然能極大地改善光纖傳輸系統的頻帶利用率,但是隨著通信需求的距離不斷加大,就需要一門更好的技術來支持超長距離傳輸,因此就有了DWDM(密集波分復用技術)及OTDM(光時分復用技術)和WDM(波分復用技術)相結合的產生。這種結合技術的優勢在于極大的提升光通信系統的傳輸速率和傳輸帶寬。依靠WDM(波分復用技術)和OTDM(光時分復用技術)來提高光纖通信系統的傳輸帶寬的效果是一定的,因此可以把多個光時分復用信號進行波分復用,從而提高系統的傳輸帶寬。RZ(歸零)編碼的占空比在光纖通信中對光纖的PDM(偏振模色散)和非線性適應能力很強,此外RZ編碼信號的占空比在超高速系統中很小,這對色散的要求也降低了,所以一般超大容量的通信系統都采用RZ編碼傳輸。

3.2全光網絡(AONAllOpticalNetwork)

全光網是指信號在網絡中傳輸和交換的過程中始終以光的形式存在,只在出入網絡時才進行電/光和光/電的變換。由于在傳輸的整個過程中都沒有電的處理,所以極大的提高了網絡資源的利用率,通信網干線總容量的進一步提高。全光網絡不能獨立在通信系統中存在,它必須要結合因特網、移動通信網等通信技術,因此光網絡必將向著服務多元化和資源配置的方向發展。全光網絡網絡結構十分的簡潔,組網也十分的靈活可變,可在不附加任何的交換處理設備的情況下隨意添加新的節點。全光網絡不僅能提供超大帶寬、極高處理速率和極低誤碼率,而且也具有良好的透明性、兼容性、可靠性、開放性和可擴展性。從光纖通信的發展趨勢來看,未來信息網絡的核心將是建立一個一光交換技術為主的光網絡層,消除電光瓶頸也是未來光通信發展的必然趨勢。

篇(7)

2遙泵系統中拉曼效應的基本原理

同纖遙泵同時還利用了光纖的拉曼效應對信號光進行放大。拉曼效應是在光纖中傳輸高功率信號時發生的非線性效應(受激拉曼散射),泵浦光子的能量產生了一個與信號光同頻率的光子和一個聲子,高功率信號的一部分能量經拉曼效應傳遞給信號光,實現對信號光的放大[3]。拉曼增益強度與泵浦光強和泵浦光與信號光的頻率差有很大關系,差值為13THz時,這種增益達到極點。因此,要放大1530~1605nm的工作波長,最佳泵浦源波長在1420~1500nm波段,遙泵的泵浦光波長為1480nm,產生的拉曼效應能夠對信號光進行放大[3]。光纖中的受激拉曼增益譜如圖4。EDFA泵浦光的波長一般為980和1480nm,其中1480nm波長的泵浦光具有更高的泵浦效率。遙泵系統中的RGU距離泵浦源較遠(一般在50~100km),考慮到980nm波長的光在光纖中衰減較大,而1480nm波長的泵浦光具有更高的效率,因此一般選用1480nm波長的泵浦光。在單波系統中,遠端RGU一般采用同向泵浦的方式。同向泵浦示意圖參見圖3。

3遙泵系統在電力系統超長距離傳輸中的應用

在埃塞俄比亞復興大壩輸變電工程中,由Gerd水電站至Dedesa變電站的光纜長度約為363km,采用G.655D光纖(康寧的Leaf大有效面積光纖)。由于光纜長度過長,整個系統的衰耗很大,必須在系統中采用遙泵放大技術。整個系統由光放大器、預放大器、EFEC、CoRFA(前向拉曼放大器)和遙泵等放大器件組成。超長距離無中繼傳輸遙泵放大方案配置如圖5所示。全段光纖的參數如下:光纖衰減系數為0.20dB/km,光纜衰減為72.6dB,固定接頭衰減系數為0.01dB/km,固定接頭衰減為3.63dB,活動連接器衰耗為1dB,光通道代價為2dB,光纜衰減富余度為5dB,總衰減為84.23dB,光纖色散系數為4.5ps/(nm•km),總色散為1633.5ps/nm,光放大器發送功率為17dBm,SBS+前向喇曼等效增益為8dB,加預放后接收靈敏度為-38dBm,后向拉曼等效增益為6dB,EFEC功率增益為8dB,遙泵功率增益為9dB,功率電平富余度為1.77dBm。該遙泵系統采用同纖遙泵的工作方式。RPU發送的泵浦光功率為30.5dBm(波長為1480nm),RGU的有效輸入泵浦功率為9~10dBm,考慮一定的余量,要求最終到達RGU的泵浦功率約為12dBm。波長為1480nm的泵浦光在G.655D光纖中的衰減系數約為0.24dB/km(含光纖熔接頭損耗),因此RGU距RPU泵浦源的最佳距離L=(30.5-12)/0.24=77.08km。即需在距變電站約77km處,選擇一個交通方便、便于維護的輸電線路鐵塔,將RGU安裝在該鐵塔上。我們將上述理論計算結果輸入OTA(光傳輸系統分析)軟件進行驗算得知,當RGU距后端泵浦源的距離為77km時,前置放大器輸出信號的OSNR(光信噪比)為13.85dB,符合系統設計要求。由OTA軟件計算出的RGU距后端泵浦源的最優距離為89km,EDF的最佳長度約為27.8m,泵浦源功率為1000mW,前置放大器輸出信號的理論OS-NR為15.97dB。

篇(8)

二、礦山通信的制約因素

礦山通信企業的特點主要是設備更新速度慢、建設時間長等。由于每個時期的通信設備都一起運行,所以會有信息孤島現象的問題存在。且其內部系統有不少不同來源的信息。例如礦山系統和外部環境間有信息流動和交換的現象,其中包括礦產品銷售、人力供應、電力供應等。這類信息相互制約、相互影響。礦山井下施工建設中,由于井下結構復雜、空間狹小、接收不到信號等因素,急需先進的礦山通信技術,以便在施工過程中能準確、及時的傳輸信息,為優化方案提供參考的依據。

三、光纖通信與礦山通信系統建設的實際應用

(一)礦區網絡連接系統中的應用

光纖的高寬帶、低成本等特點能滿足礦山信息傳輸日益增長的需求[2]。國家已經制定了光纜使用的相關標準,很多礦山企業也投入生產使用。目前一些普通光纜線、架空地線復合光纜以及阻燃光纜等都被礦山企業利用,以連接各礦山建筑設施和采礦點。這類光纜的使用大大提高了施工的便捷性和線路的穩定性,同時還能有效節約施工建設的成本。因為增加光纖芯數并對光纖價格的影響不大,所以在需要光纖芯數的基礎上再適當預留一點,以免日后需要時能及時提供,以滿足業務多樣性的需求。由于光纖通信技術具有一致性傳輸系統介質的特點,所以,現代礦山通信系統的建設中,可以將光纖以太網作為介質,其傳輸距離遠,損耗低,承載力強,其接入方法即介質轉換,光纖兩端都是光貓,從光貓出來有的需要接入光端轉換設備,把光纖帶的光信號轉換成網線攜帶的數字信號,有些光貓集成的轉換功能,可以直接轉換輸出數字信號。利用光纖線路構建一個礦山骨干通信網,再加入無線設備和該通信網配合使用,為礦區提供無線設備或有線光纜的雙重信息傳輸和接收口。圖2礦業光纖以太網結構模型例如,某礦業根據礦區的實際情況,經過建設和相關系統的整合,建立了光纖以太網,該組網可以全面覆蓋整個礦區的建筑。其中工業環網的整個線路連接選用變電所、兩個大車間以及辦公樓,礦區的地表到井下被全部覆蓋;其分支線路覆蓋了所有生活區域。光纜可以傳輸人員定位、電力調度、視頻監測、環境監測、有線電視等業務數據,實現一條光纜線的多種業務同時使用,既節約施工費用又節約工程建設的成本。關于該礦山企業的光纖以太網的構建結構見圖2。將光纖通信技術運用到礦山企業工程中,建設完整的光纖骨干網,為各種業務傳輸信息數據,以解決數據傳輸過程中的鏈路問題。

(二)礦區電力中的應用

當前,礦山電力系統中很多自動化設備只應用于漏電保護、防爆開關和配電網等相關功能,它們之間沒有互相連接的網絡系統,都是單獨運行的狀態。礦井復雜的內部結構對供電系統的工程量提出更高要求,配電供電服務系統以及變電所建設的主要目的是保障開挖采掘運輸的過程是暢通的。但在實際井下挖掘作業時,由于井下復雜的地質條件,供電系統經常會出現故障,一旦失去電力服務,井下的挖掘工作就沒有辦法進行,這將嚴重影響施工進度,從而降低礦井開采的生產量。利用特種光纖技術能有效改善井下的供電現狀,在礦山供電系統中應用復合電線可以為井下施工的機械設備提供源源不斷的穩定電力,保證這些設備的正常操作和運行,利用光纖技術建立完整的網絡系統,合理使用和分配電力資源,確保礦山施工區域供電的穩定性。同時,還可以在一定程度上節省建設供電系統的成本,在電力系統運行的過程中,也能有效縮減成本,從而有效提高礦山企業工程建設的整體經濟效益。在完成網絡系統的建設基礎上,再采用以太網絡技術,構建更加完善的網絡監測系統。除此之外,光纖技術還可以結合多媒體顯像技術,對井內的實際運行狀況進行實時監控,在很大程度上提高了礦井開采的工作效率。工作人員通過監測系統可以充分掌握礦井內部的實際施工情況。如果井下有設備故障等問題,監測系統可以及時準確地反映故障的實際情況和具置,并第一時間切斷故障發生的局部電源,同時發出警報,提示工作人員,以便在第一時間實施具體可行的解決措施,并在最快時間內恢復井內供電,將故障帶來的影響和損失降到最低。

篇(9)

2光纖通信技術的發展趨勢

2.1將朝著超高速系統發展隨著現代科技的飛速發展,光纖通信技術已經擁有了更快的傳輸速度,為了最大限度的滿足社會發展的需求,光纖通信技術必然會朝著超高速系統的方向發展。推動光纖通信技術傳輸速度的提升能夠給我們帶來下面兩個優勢:一方面是光纖通信技術朝著超高速系統發展會極大的提高新業務的傳輸容量;另一方面是隨著光纖通信技術傳輸速度的提升能夠確保多媒體和寬帶等不同技術功能的更好實現。另外,全光傳輸距離的增加也能夠在一定程度上增加光纖傳輸容量。所以,超高速系統應該是未來光纖通信技術的主要發展方向。

2.2將朝著更大的容量發展光纖通信技術的發展要求其擁有更大的容量,現階段,光纖通信應用的帶寬只有百分之一,剩余的99%的帶寬無法充分的利用起來。所以為了避免光纖帶寬的浪費,我們必須要盡快的開發光纖通信容量。隨著現代科學技術的發展,光纖通信技術具備的傳輸容量越來越大,在未來的幾年之內將其容量擴充到目前的幾十甚至幾百倍也不是沒有可能性的。

篇(10)

2光纖通信課程理論教學

針對同學們反映本課程中難懂的理論知識、課前我補充了一些基礎知識.比如光波導理論、高等數學、光電子技術、電磁學等知識在該課程中要用到的重要理論.列出一些參考書目供學有余力的同學選讀,比如楊祥林編著的《光纖通信系統》,北京郵電大學出版社出版的顧畹儀編著《光纖通信系統》教材.我們采用多種方法分析一些抽象概念,逐步闡述.例如,光纖傳輸的波動理論是光纖通信理論中的一個重要內容,通常采用的方法就是波動方程和電磁場表達式求解,其過程繁雜,同學們很難將推導出的理論結果和實際上的物理意義對應.因此在該部分的教學中采用先引入并重點講解波導、導波等概念的方法,然后解釋傳輸模式,不同的模式對應不同的傳播角,產生不同的離散模式是由于光波在芯區和包層分界面上發生反射時產生相位移動引起的,在理解概念的基礎上,再運用特征方程理論推導出結論.充分利用多媒體的優勢,多媒體PPT教學與傳統教學模式相結合,以便提高教學質量.結合該學科的實際,作者制作了適合實際情況的PPT課件,課件的教學效果良好,比如在講解數字光纖通信系統組成的時候,結合PPT課件圖,直觀、形象生動的看出了系統由光發射機、光纖光纜、中繼器與光接收機等基本單元組成.此外還包括一些互連與光信號處理器件,如光纖連接器、隔離器、調制器、濾波器、光開關及路由器、分插復用器ADM等.

3光纖通信實訓教學環節

本課程的實訓環節除了安排常規的8個實驗,模擬信號電—光、光—電轉換傳輸實驗、數字信號電—光、光—電轉換傳輸實驗、光發送、接收模塊實驗、光纖無源器件特性測試實驗、數字光發送接口指標測試實驗、光纖傳輸特性測量實驗波分復用(WDM)光纖通信系統實驗等.另外,筆者引入了OpticSimu仿真實訓軟件,該軟件恰好可以克服以上硬件實驗平臺的不足,可以方便地配置各種光纖通信系統和網絡,形象地得到仿真實驗結果,配置各種光纖通信系統和光網絡,仿真其傳輸性能,方便、形象地獲得系統和網絡中各點的光譜、波形、眼圖、光信噪比和接收靈敏度.軟件界面如圖2所示.圖3是利用原子功能器件搭建的光分插復用器(OADM)和光交叉連接(OXC)結構.運用OADM和OXC,構建WDM光網絡,并對其進行傳輸性能仿真,為光網絡的設計和規劃提供參考.

上一篇: 英語議論文寫作論文 下一篇: 環保項目論文
相關精選
相關期刊
久久久噜噜噜久久中文,精品五月精品婷婷,久久精品国产自清天天线,久久国产一区视频
亚洲免费VA不卡在线播放 | 亚洲人成影院在线播放影院 | 日本少妇精品亚洲第一区 | 亚洲高清91在线 | 日韩女同一区二区三区 | 亚洲成A人片在线V观看 |