數據加密技術論文匯總十篇

時間:2022-08-08 21:42:53

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇數據加密技術論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

數據加密技術論文

篇(1)

在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟件很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密算法的(當同時有原文和密文時,破譯加密算法雖然也不是很容易,但已經是可能的了)。最好的加密算法對系統性能幾乎沒有影響,并且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟件包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密算法都要有高效的加密和解密能力。

幸運的是,在所有的加密算法中最簡單的一種就是“置換表”算法,這種算法也能很好達到加密的需要。每一個數據段(總是一個字節)對應著“置換表”中的一個偏移量,偏移量所對應的值就輸出成為加密后的文件。加密程序和解密程序都需要一個這樣的“置換表”。事實上,80x86cpu系列就有一個指令‘xlat’在硬件級來完成這樣的工作。這種加密算法比較簡單,加密解密速度都很快,但是一旦這個“置換表”被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密算法對于黑客破譯來講是相當直接的,只要找到一個“置換表”就可以了。這種方法在計算機出現之前就已經被廣泛的使用。

對這種“置換表”方式的一個改進就是使用2個或者更多的“置換表”,這些表都是基于數據流中字節的位置的,或者基于數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的“置換表”,并且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。

與使用“置換表”相類似,“變換數據位置”也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然后按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。

但是,還有一種更好的加密算法,只有計算機可以做,就是字/字節循環移位和xor操作。如果我們把一個字或字節在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然后循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。

在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,并且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟件中一定要使用加密技術

循環冗余校驗是一種典型的校驗數據的方法。對于每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用于文件的傳輸,例如xmodem-crc。這是方法已經成為標準,而且有詳細的文檔。但是,基于標準crc算法的一種修改算法對于發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。二.基于公鑰的加密算法

一個好的加密算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,并用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰算法和非對稱密鑰算法。所謂對稱密鑰算法就是加密解密都使用相同的密鑰,非對稱密鑰算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的算法存在。例如,對于一個輸入‘a’執行一個操作得到結果‘b’,那么我們可以基于‘b’,做一個相對應的操作,導出輸入‘a’。在一些情況下,對于每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對于一個沒有定義的操作來講,基于加密算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。

rsa加密算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至于在現實上是不可行的。加密算法本身也是很慢的,這使得使用rsa算法加密大量的數據變的有些不可行。這就使得一些現實中加密算法都基于rsa加密算法。pgp算法(以及大多數基于rsa算法的加密方法)使用公鑰來加密一個對稱加密算法的密鑰,然后再利用一個快速的對稱加密算法來加密數據。這個對稱算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。

我們舉一個例子:假定現在要加密一些數據使用密鑰‘12345’。利用rsa公鑰,使用rsa算法加密這個密鑰‘12345’,并把它放在要加密的數據的前面(可能后面跟著一個分割符或文件長度,以區分數據和密鑰),然后,使用對稱加密算法加密正文,使用的密鑰就是‘12345’。當對方收到時,解密程序找到加密過的密鑰,并利用rsa私鑰解密出來,然后再確定出數據的開始位置,利用密鑰‘12345’來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。

一些簡單的基于rsa算法的加密算法可在下面的站點找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一個嶄新的多步加密算法

現在又出現了一種新的加密算法,據說是幾乎不可能被破譯的。這個算法在1998年6月1日才正式公布的。下面詳細的介紹這個算法:

使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:

把256個隨機數放在一個距陣中,然后對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256字節的表。讓這個隨機數產生器接著來產生這個表中的其余的數,以至于每個表是不同的。下一步,使用"shotguntechnique"技術來產生解碼表。基本上說,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256字節的解碼表它對應于我們剛才在上一步產生的256字節的加密表。

使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個字節的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個字節密文是這個256字節的表的索引。或者,為了提高加密效果,可以使用多余8位的值,甚至使用校驗和或者crc算法來產生索引字節。假定這個表是256*256的數組,將會是下面的樣子:crypto1=a[crypto0][value]

變量''''crypto1''''是加密后的數據,''''crypto0''''是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個“種子”,這個“種子”是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試:使用16個字節來產生表的索引,以128位的密鑰作為這16個字節的初始的"種子"。然后,在產生出這些隨機數的表之后,就可以用來加密數據,速度達到每秒鐘100k個字節。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。

加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關于這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如“eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個字節都依賴于其前一個字節的密文,而不是實際的值。對于任一個單個的字符的這種變換來說,隱藏了加密數據的有效的真正的長度。

如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。這個算法產生了一系列的隨機數。算法如下:

unsignedlongdw1,dw2,dw3,dwmask;

inti1;

unsignedlongarandom[256];

dw1={seed#1};

dw2={seed#2};

dwmask={seed#3};

//thisgivesyou332-bit"seeds",or96bitstotal

for(i1=0;i1<256;i1++)

{

dw3=(dw1+dw2)^dwmask;

arandom[i1]=dw3;

dw1=dw2;

dw2=dw3;

}

如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:

int__cdeclmysortproc(void*p1,void*p2)

{

unsignedlong**pp1=(unsignedlong**)p1;

unsignedlong**pp2=(unsignedlong**)p2;

if(**pp1<**pp2)

return(-1);

elseif(**pp1>*pp2)

return(1);

return(0);

}

...

inti1;

unsignedlong*aprandom[256];

unsignedlongarandom[256];//samearrayasbefore,inthiscase

intaresult[256];//resultsgohere

for(i1=0;i1<256;i1++)

{

aprandom[i1]=arandom+i1;

}

//nowsortit

qsort(aprandom,256,sizeof(*aprandom),mysortproc);

//finalstep-offsetsforpointersareplacedintooutputarray

for(i1=0;i1<256;i1++)

{

aresult[i1]=(int)(aprandom[i1]-arandom);

}

...

變量''''aresult''''中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個字節對字節的轉換表,就可以很容易并且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字符,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言并沒有構成一個加密算法,只是加密算法一個組成部分。

作為一個測試,開發了一個應用程序來測試上面所描述的加密算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用于加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至于在現實上是不可能的。

四.結論:

由于在現實生活中,我們要確保一些敏感的數據只能被有相應權限的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用于政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。

參考文獻:

1.pgp!/

cyberknights(newlink)/cyberkt/

(oldlink:/~merlin/knights/)

2.cryptochamberjyu.fi/~paasivir/crypt/

3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/

4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/

agreatenigmaarticle,howthecodewasbrokenbypolishscientists

/nbrass/1enigma.htm

5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/

6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/

7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/

篇(2)

2計算機網絡安全中數據加密技術的有效應用

當前,數據加密技術是一項確保計算機網絡安全的應用最廣泛的技術,且隨著社會及科技的發展而不斷發展。數據加密技術的廣泛應用為計算機網絡安全提供良好的環境,同時較好的保護了人們運用互聯網的安全。密鑰及其算法是數據加密技術的兩個主要元素。密鑰是一種對計算機數據進行有效編碼、解碼的算法。在計算機網絡安全的保密過程中,可通過科學、適當的管理機制以及密鑰技術來提高信息數據傳輸的可靠性及安全性。算法就是把普通信息和密鑰進行有機結合,從而產生其他人難以理解的一種密文步驟。要提高數據加密技術的實用性及安全性,就要對這兩個因素給予高度重視。

2.1鏈路數據加密技術在計算機網絡安全中的應用

一般情況下,多區段計算機計算機采用的就是鏈路數據加密技術,其能夠對信息、數據的相關傳輸路線進行有效劃分,并以傳輸路徑以及傳輸區域的不同對數據信息進行針對性的加密。數據在各個路段傳輸的過程中會受到不同方式的加密,所以數據接收者在接收數據時,接收到的信息數據都是密文形式的,在這種情況下,即便數據傳輸過程被病毒所獲取,數據具有的模糊性也能對數據信息起到的一定程度的保護作用。此外,鏈路數據加密技術還能夠對傳送中的信息數據實行相應的數據信息填充,使得數據在不同區段傳輸的時候會存在較大的差異,從而擾亂竊取者數據判斷的能力,最終達到保證數據安全的目的。

2.2端端數據加密技術在計算機網絡安全中的應用

相比鏈路數據加密技術,端端數據加密技術實現的過程相對來說較為容易。端端數據加密技術主要是借助密文形式完成信息數據的傳輸,所以數據信息傳輸途中不需要進行信息數據的加密、解密,這就較好的保障了信息安全,并且該種技術無需大量的維護投入及運行投入,由于端端數據加密技術的數據包傳輸的路線是獨立的,因而即使某個數據包出現錯誤,也不會干擾到其它數據包,這一定程度上保證了數據傳輸的有效性及完整性。此外,在應用端端數據加密技術傳輸數據的過程中,會撤銷原有信息數據接收者位置的解密權,除了信息數據的原有接收者,其他接收者都不能解密這些數據信息,這極大的減少了第三方接收數據信息的幾率,大大提高了數據的安全性。

2.3數字簽名信息認證技術在計算機網絡安全中的有效應用

隨著計算機相關技術的快速發展,數字簽名信息認證技術在提高計算機網絡安全中的重要作用日漸突出。數字簽名信息認證技術是保障網絡安全的主要技術之一,主要是通過對用戶的身份信息給予有效的確認與鑒別,從而較好的保證用戶信息的安全。目前,數字簽名信息認證的方式主要有數字認證以及口令認證兩種。數字認證是在加密信息的基礎上完成數據信息密鑰計算方法的有效核實,進一步增強了數據信息的有效性、安全性。相較于數字認證而言,口令認證的認證操作更為快捷、簡便,使用費用也相對較低,因而使用范圍更廣。

2.4節點數據加密技術在計算機網絡安全中的有效應用

節點數據加密技術和鏈路數據加密技術具有許多相似之處,都是采取加密數據傳送線路的方法來進行信息安全的保護。不同之處則是節點數據加密技術在傳輸數據信息前就對信息進行加密,在信息傳輸過程中,數據信息不以明文形式呈現,且加密后的各項數據信息在進入傳送區段之后很難被其他人識別出來,以此來達到保護信息安全的目的。但是實際上,節點數據加密技術也存在一定弊端,由于其要求信息發送者和接收方都必須應用明文形式來進行信息加密,因而在此過程中,相關信息一旦遭到外界干擾,就會降低信息安全。

2.5密碼密鑰數據技術在計算機網絡安全中的有效應用

保護數據信息的安全是應用數據加密技術的最終目的,數據加密是保護數據信息安全的主動性防治措施。密鑰一般有私用密鑰及公用密鑰兩種類型。私用密鑰即信息傳送雙方已經事先達成了密鑰共識,并應用相同密鑰實現信息加密、解密,以此來提高信息的安全性。而公用密鑰的安全性則比較高,其在發送文件發送前就已經對文件進行加密,能有效避免信息的泄露,同時公用密鑰還能夠與私用密鑰互補,對私用密鑰存在的缺陷進行彌補。

篇(3)

2常見的計算機病毒傳播途徑

2.1電子郵件傳播一些惡意電子郵件HTML正文中嵌入惡意腳本,或電子郵件附件中攜帶病毒的壓縮文件,這些病毒經常利用社會工程學進行偽裝,增大病毒傳播機會。

2.2網絡共享傳播一些病毒會搜索本地網絡中存在的共享,包括默認共享,通過空口令或弱口令猜測,獲得完全訪問權限,并將自身復制到網絡共享文件夾中,通常以游戲,CDKEY等相關名字命名,不易察覺。

2.3P2P共享軟件傳播隨著P2P軟件的普遍應用,也成為計算機病毒傳播的重要途徑,通常把病毒代碼植入到音頻、視頻、游戲軟件中,誘使用戶下載。

2.4系統漏洞傳播計算機病毒的防治和數據加密文/李康隨著互聯網的發展,我們的企業和個人用戶在享受網絡帶來的快捷和商機的同時,也面臨無時不在的計算機病毒威脅,計算機病毒也由全球性爆發逐漸向地域性爆發轉變。本文主要簡述計算機病毒的特點和防治方法,以及數據機密技術的應用。摘要由于操作系統固有的一些設計缺陷,導致被惡意用戶通過畸形的方式利用后,可執行任意代碼,病毒往往利用系統漏洞進入系統,達到傳播的目的。常被利用的漏有RPC-DCOM緩沖區溢出(MS03-026)、WebDAV(MS03-007)、LSASS(MS04-011)。2.5移動設備傳播一些使用者的優盤、移動硬盤等移動存儲設備,常常攜帶電腦病毒,當插入電腦時沒有使用殺毒軟件對病毒進行查殺,可能導致病毒侵入電腦。

3計算機病毒的防治策略

3.1計算機病毒的預防計算機病毒防治,要采取預防為主的方針,安裝防病毒軟件,定期升級防病毒軟件,不隨便打開不明來源的郵件附件,盡量減少其他人使用你的計算機,及時打系統補丁,從外面獲取數據先檢察,建立系統恢復盤,定期備份文件,綜合各種防病毒技術,防火墻與防毒軟件結合,達到病毒檢測、數據保護、實時監控多層防護的目的。

3.2病毒的檢測對于普通用戶,使用殺毒軟件即可對計算機進行常規的病毒檢測,但由于病毒傳播快、新病毒層出不窮,殺毒軟件不能對新病毒有效的查殺,對于專業人員進行查毒。常見的病毒檢測方法有比較法、特征代碼掃描法、效驗和法、分析法,當有新病毒出現時,需要同時使用分析法和比較法,搞清楚病毒體的大致結構,提取特征代碼或特征字,用于增添到病毒代碼庫供病毒掃描和識別程序用;詳細分析病毒代碼,為制定相應的反病毒措施制定方案。

3.3病毒的清除使用windows自帶的任務管理器或第三方的進程管理工具,中止病毒進程或服務,根據病毒修改的具體情況,刪除或還原相應的注冊表項,檢查Win.ini配置文件的[windows]節中的項和System.ini配置文件的[boot]節中的項,刪除病毒相關的部分。常用的工具有:系統診斷(SIC,HijackThis)、分析進程(ProcessExplorer)、分析網絡連接(TCPView)、監視注冊表(Regmon,InstallRite)、監視文件系統(Filemon,InstallRite)。

3.4殺毒軟件的選擇一般的殺毒軟件具有預防、檢測、消除、免疫和破壞控制的功能,選擇殺毒軟件時應考慮軟件的高偵測率、誤報率、漏報率、操作管理和隔離政策等幾個關鍵因素。

4計算機數據加密技術

計算機加密的分類目前對網絡數據加密主要有鏈路加密、節點對節點加密和端對端加密3種實現方式。

(1)鏈路加密。鏈路加密又稱在線加密,它是對在兩個網絡節點間的某一條通信鏈路實施加密,是目前網絡安全系統中主要采用的方式。

(2)節點對節點加密。節點對節點加密是在中間節點里裝有用于加密和解密的保護裝置,由這個裝置來完成一個密鑰向另一個密鑰的交換,提高網絡數據的安全性。

(3)端對端加密。端對端加密又稱脫線加密或包加密,它允許數據在從源節點被加密后,到終點的傳輸過程中始終以密文形式存在,消息在到達終點之前不進行解密,只有消息到達目的節點后才被解密。因為消息在整個傳輸過程中均受到保護,所以即使有節點被損壞也不會使消息泄露。身份認證技術:通過身份認證可以驗證消息的收發者是否持有身份認證符,同時驗證消息的完整性,并對消息的序號性和時間性進行認證,有效防止不法分子對信息系統進行主動攻擊。數字簽名技術:數字簽名是信息收發者使用公開密鑰算法技術,產生別人無法偽造的一段數字串。發送者使用自己的私有密鑰加密后將數據傳送給接受者,接受者需要使用發送者的公鑰解開數據,可以確定消息來自誰,同時是對發送者發送信息的真實性的一個證明。數字簽名具有可驗證、防抵賴、防假冒、防篡改、防偽造的特點,確保信息數據的安全。

篇(4)

 

0引言

快速信息化已經是我國經濟社會發展的一個顯著特征。許多的企事業單位,尤其是物流企業和電子商務企業已經把數據平臺作為了自己的核心競爭力之一。但是基于信息技術和網絡技術的數據平臺正在面臨著來自安全性方面的諸多挑戰。

本文提出了一種通用的基于兩種加密技術的加密系統,為解決數字平臺所面臨的安全性難題提供了可能。該系統融合了對稱加密技術、非對稱加密技術、驗證技術,較好的實現了了數據交流者的身份認證、數據傳輸過程中的保密、數據發送接收的不可否認、數據傳輸結果的完整。本系統尤其適用于對保密度有較高需求的數據平臺。

本文重點針對4個方面進行討論:(1)數據平臺安全性問題;(2) 對稱加密體制與非對稱加密體制; (3) 一種更加安全的加密與驗證系統; (4) 總結.

1數據平臺安全性問題

在數字時代,數據平臺的構建已經是企業的必需。論文參考網。企業的關鍵業務數據作為企業的寶貴資源和生存發展的命脈,其安全性是不言而喻的。論文參考網。但是,現實是,這些數據卻沒有得到很好的保護。據賽門鐵克公司2010年1月對27個國家的2100家企業進行的調查顯示,被調查的所有企業(100%)在2009年都曾出現過數據丟失問題,其中有75%的企業曾遭受過網絡攻擊。

數據平臺的建設要注意以下問題:

(1)嚴格終端管理【1】。

終端采用硬件數字證書進行認證,并要求終端用戶定期修改PIN碼,以確保終端和數據來源的真實性。

(2)采取訪問控制技術,允許合法用戶訪問規定權限內的應用。

(3)保證通信鏈路安全,建立端到端傳輸的安全機制。

其中,解決數據安全性問題最有效的方法就是在存儲和傳輸過程中對數據加密,常見的加密技術包括對稱加密技術和非對稱加密技術。

2對稱加密體制與非對稱加密體制

2.1. 對稱加密體制

2.1.1對稱加密體制的原理

對稱加密技術在已經有了悠久的歷史,以凱撒密碼為代表的古典密碼技術曾被廣泛應用。現代的對稱加密算法雖然比那些古典加密算法復雜許多,但是其原理都是一樣的:數據發送方將明文數據加密后傳送給接收方,接收方利用發送方用過的密鑰(稱作秘密密鑰)及相同算法的逆算法把密文解密成明文數據。

圖1給出了對稱加密體制的工作流程。發送方對要發送的明文數據M用秘密密鑰K加密成密文C后,密文經網絡傳送到接收方,接收方用發送方使用過的秘密密鑰K把密文C還原成明文數據M。

圖1: 對稱加密體制工作原理圖

2.1.2對稱加密體制的特點

對稱加密算法的優點是加解密時運算量比較小,所以加解密速度比較快[2]、加解密的效率也比較高。

該算法的缺點是不容易管理密鑰。原因有二:一,在對稱加密體制下,用來加密和解密的密鑰是同一個,這就要求接收數據一方,即解密數據一方需要事先知道數據發送方加密時所使用的密鑰。二,每對用戶每次使用對稱加密算法時,都需要使用其他人不知道的惟一的鑰匙,密鑰的需要量比較大。假如平臺上有n個用戶需要交流,根據保密性要求,每兩個用戶就需要一個密鑰,則這n個用戶就需要n(n-1)/2個密鑰。論文參考網。

2.2. 非對稱加密體制

2.2.1非對稱加密體制的概念

與對稱加密技術不同,在非對稱加密體制下加密密鑰與解密密鑰不相同【3-4】。在這種體制下,每個用戶都有一對預先選定的、完全不同但又完全匹配的密鑰:一個是可以像電話號碼一樣進行注冊公布的公開密鑰KPub,另一個是用戶需要保密的、可以用作身份認證的私有密鑰KPri,而且無法根據其中一個推算出另一個。這樣,數據的發送方(加密者)知道接收方的公鑰,數據接收方(解密者)才是唯一知道自己私鑰的人。

非對稱加密技術以大數的分解問題、離散對數問題、橢圓曲線問題等數學上的難解問題來實現,是目前應用最為廣泛的加密技術。

圖2給出了非對稱加密體制的工作流程。發送方把明文數據M用接收方的公鑰KPub接收方

加密成密文C后經網絡傳輸給接收方,接收方用自己的私鑰KPri接收方把接收到的密文還原成明文數據M。

圖2: 非對稱加密體制工作原理圖

2.2.2非對稱加密體制的特點

非對稱加密算法的優點是安全性比較高

非對稱加密算法的缺點是算法十分復雜,加解密的效率比較低,用該技術加解密數據是利用對稱加密算法加解密同樣數據所花費時間的1000倍。

3. 一種更加安全的加密與驗證系統

3.1加密與驗證系統的框架

更加安全的加密與驗證系統主要由數據的加密作業、數據的解密作業、數據完整性驗證三大模塊組成。

數據加密模塊由數據發送方作業。發送方首先將待發送數據明文經哈希變換并用發送方私鑰加密后得到數字簽名。然后,使用對稱加密中的秘密密鑰對數字簽名和原數據明文進行再加密。最后,使用接收方的公鑰對秘密密鑰進行加密,并將上述操作結果經網絡傳送出去。

數據解密作業模塊由數據接收方作業。接收方首先用自己的私鑰對接受到的、經過加密的秘密密鑰進行解密。然后,用解密得到的秘密密鑰對接收到的數據密文和加密后的簽名進行解密。

數據完整性驗證模塊也是由數據接收方作業。接收方對解密模塊作業得到的數據明文和數據簽名進行操作,首先將該明文進行哈希變換得到數據摘要。然后,運用數據發送方的公鑰對數據簽名變換得到另一個摘要。最后,比較這兩個摘要。若兩者完全相同,則數據完整。否則,認為數據在傳輸過程中已經遭到破壞。

該系統框架將對稱加密、非對稱加密、完整性校驗三者融為一體,既保證了數據的高度安全性又有很好的時效性,同時,兼顧了數據源的合法性和數據的完整性,能有效地規避仿冒數據源和各類攻擊,是一種值得推廣的數據存儲和傳輸安全系統模型。

3.2加密與驗證系統的實現

圖3給出了這種種更加安全的加密與驗證系統工作流程。其中,M指數據明文,C指數據密文,A、B分別為數據發送方和接收方,私鑰A指A的私鑰,公鑰B指B的公鑰。

圖3:一種更加安全的加密與驗證系統

4.總結

文中提出了一種基于兩種加密技術的加密與驗證系統設計,討論了該加密與驗證系統的總體框架與流程實現,得出了本系統能到達到更高的安全性與時效性的結論。

數字時代的到來給我們帶來了前所未有的挑戰和機遇,我們必須迎頭趕上,化解挑戰抓住機遇,提高自身的綜合競爭力。把信息技術應用于各個行業,必將為我國社會經濟的發展和人民生活水平的提高帶來新的福音。

參考文獻

[1]周蓉蓉. 構建公安消防信息網內外網邊界接入平臺[J]. 網絡安全技術與應用, 2009, 12:46-48.

[2]管孟輝,吳健,湛文韜,張濤. 移動電子政務平臺中安全Web服務的研究[J]. 計算機測量與控制, 2009.17(5): 967-969.

[3]程偉. 基于無線的核心WPKI安全開發平臺設計[J]. 地理與地理信息科學, 2009, 9(6) : 50-52.

篇(5)

當前形勢下,人們進行信息數據的傳遞與交流主要面臨著兩個方面的信息安全影響:人為因素和非人為因素。其中人為因素是指:黑客、病毒、木馬、電子欺騙等;非人為因素是指:不可抗力的自然災害如火災、電磁波干擾、或者是計算機硬件故障、部件損壞等。在諸多因素的制約下,如果不對信息數據進行必要的加密處理,我們傳遞的信息數據就可能泄露,被不法分子獲得,損害我們自身以及他人的根本利益,甚至造成國家安全危害。因此,信息數據的安全和加密在當前形勢下對人們的生活來說是必不可少的,通過信息數據加密,信息數據有了安全保障,人們不必再顧忌信息數據的泄露,能夠放心地在網絡上完成便捷的信息數據傳遞與交流。

1信息數據安全與加密的必要外部條件

1.1計算機安全。每一個計算機網絡用戶都首先把自己的信息數據存儲在計算機之中,然后,才進行相互之間的信息數據傳遞與交流,有效地保障其信息數據的安全必須以保證計算機的安全為前提,計算機安全主要有兩個方面包括:計算機的硬件安全與計算機軟件安全。1)計算機硬件安全技術。保持計算機正常的運轉,定期檢查是否出現硬件故障,并及時維修處理,在易損器件出現安全問題之前提前更換,保證計算機通電線路安全,提供備用供電系統,實時保持線路暢通。2)計算機軟件安全技術。首先,必須有安全可靠的操作系統。作為計算機工作的平臺,操作系統必須具有訪問控制、安全內核等安全功能,能夠隨時為計算機新加入軟件進行檢測,如提供windows安全警報等等。其次,計算機殺毒軟件,每一臺計算機要正常的上網與其他用戶交流信息,都必須實時防護計算機病毒的危害,一款好的殺毒軟件可以有效地保護計算機不受病毒的侵害。

1.2通信安全。通信安全是信息數據的傳輸的基本條件,當傳輸信息數據的通信線路存在安全隱患時,信息數據就不可能安全的傳遞到指定地點。盡管隨著科學技術的逐步改進,計算機通信網絡得到了進一步完善和改進,但是,信息數據仍舊要求有一個安全的通信環境。主要通過以下技術實現。1)信息加密技術。這是保障信息安全的最基本、最重要、最核心的技術措施。我們一般通過各種各樣的加密算法來進行具體的信息數據加密,保護信息數據的安全通信。2)信息確認技術。為有效防止信息被非法偽造、篡改和假冒,我們限定信息的共享范圍,就是信息確認技術。通過該技術,發信者無法抵賴自己發出的消息;合法的接收者可以驗證他收到的消息是否真實;除合法發信者外,別人無法偽造消息。3)訪問控制技術。該技術只允許用戶對基本信息庫的訪問,禁止用戶隨意的或者是帶有目的性的刪除、修改或拷貝信息文件。與此同時,系統管理員能夠利用這一技術實時觀察用戶在網絡中的活動,有效的防止黑客的入侵。

2信息數據的安全與加密技術

隨著計算機網絡化程度逐步提高,人們對信息數據傳遞與交流提出了更高的安全要求,信息數據的安全與加密技術應運而生。然而,傳統的安全理念認為網絡內部是完全可信任,只有網外不可信任,導致了在信息數據安全主要以防火墻、入侵檢測為主,忽視了信息數據加密在網絡內部的重要性。以下介紹信息數據的安全與加密技術。

2.1存儲加密技術和傳輸加密技術。存儲加密技術分為密文存儲和存取控制兩種,其主要目的是防止在信息數據存儲過程中信息數據泄露。密文存儲主要通過加密算法轉換、加密模塊、附加密碼加密等方法實現;存取控制則通過審查和限制用戶資格、權限,辨別用戶的合法性,預防合法用戶越權存取信息數據以及非法用戶存取信息數據。

傳輸加密技術分為線路加密和端-端加密兩種,其主要目的是對傳輸中的信息數據流進行加密。線路加密主要通過對各線路采用不同的加密密鑰進行線路加密,不考慮信源與信宿的信息安全保護。端-端加密是信息由發送者端自動加密,并進入TCP/IP信息數據包,然后作為不可閱讀和不可識別的信息數據穿過互聯網,這些信息一旦到達目的地,將被自動重組、解密,成為可讀信息數據。

2.2密鑰管理加密技術和確認加密技術。密鑰管理加密技術是為了信息數據使用的方便,信息數據加密在許多場合集中表現為密鑰的應用,因此密鑰往往是保密與竊密的主要對象。密鑰的媒體有:磁卡、磁帶、磁盤、半導體存儲器等。密鑰的管理技術包括密鑰的產生、分配、保存、更換與銷毀等各環節上的保密措施。網絡信息確認加密技術通過嚴格限定信息的共享范圍來防止信息被非法偽造、篡改和假冒。一個安全的信息確認方案應該能使:合法的接收者能夠驗證他收到的消息是否真實;發信者無法抵賴自己發出的消息;除合法發信者外,別人無法偽造消息;發生爭執時可由第三人仲裁。按照其具體目的,信息確認系統可分為消息確認、身份確認和數字簽名。數字簽名是由于公開密鑰和私有密鑰之間存在的數學關系,使用其中一個密鑰加密的信息數據只能用另一個密鑰解開。發送者用自己的私有密鑰加密信息數據傳給接收者,接收者用發送者的公鑰解開信息數據后,就可確定消息來自誰。這就保證了發送者對所發信息不能抵賴。

2.3消息摘要和完整性鑒別技術。消息摘要是一個惟一對應一個消息或文本的值,由一個單向Hash加密函數對消息作用而產生。信息發送者使用自己的私有密鑰加密摘要,也叫做消息的數字簽名。消息摘要的接受者能夠通過密鑰解密確定消息發送者,當消息在途中被改變時,接收者通過對比分析消息新產生的摘要與原摘要的不同,就能夠發現消息是否中途被改變。所以說,消息摘要保證了消息的完整性。

篇(6)

隨著互聯網的飛速發展,電子商務具有高效、成本低的優點,使電子商務漸漸變為新興的經營模式,且移動通信技術越來越成熟的發展,人們也開始發現結合移動通信技術的移動電子商務將來會擁有更大的發展空間。可是,移動商務不單單給我們帶來了便利,還給我們帶來了一系列問題。主要體現在移動電子商務在為客戶提供通信的靈活及自由時也伴隨著很多不安全的地方,威脅到了網絡客戶的個人及信息的安全。所以,關于研究傳輸數據過程當中的加密問題是很值得重視的。

1立足于XML的數據加密技術

XML加密技術是將XML加密規范作為基礎,XML加密規范由W3C發展且在2002年9月公開的。XML加密首要特征就是既能加密完整的XML文件,還可以加密一個XML文檔中的數據及部分內容。因此,在一個文檔中只需要對部分需要加密的部分進行加密的時候就可以在加密的時候將它們單獨加密。還可以將同一文檔之中不同的部分在加密時使用不同的密鑰,然后把同一個XML文檔發送給不同的人,不同的接收人看見的部分就只局限于與自身有關的部分。將同一XML文檔運用此種方式加密,加密部分的首尾會產生兩個XML標簽,以此來表明這個文檔的加密是按照XML加密標準實施的,加密之后XML文檔的數據就會顯示一串密文來代替之前的真實標簽及內容。XML加密標準讓提供XML數據的一方能夠隨著不同的用戶需要對內容實行顆粒化的處理及控制,因為沒有對整個XML文件進行了加密而只是對特定的數據進行了加密,所以XML處理器還是可以處理及識別整個文件。

2立足于XML數據加密的設計與實現即混合加密方法的原理

現代密碼學的運用考慮到密鑰的保密性,組成現代密碼系統的要素包括明文、算法、密鑰和密文。基于密鑰的算法一般包含不對稱加密算法及對稱加密算法。這兩種方法都有著各自的不足。運行速度與對稱加密算法相比慢了很多是不對稱加密算法的主要不足,因此在加密大數據方面來講不太實用。對稱加密的主要不足體現在以下三點:(1)是密鑰的安全性;(2)互相通信的兩方的密鑰都是相同的,由于通信的內容有可能是雙方運用一樣的密鑰形成的,因此其中的一方可以對發送過的消息進行否認;(3)在參與通信的人員太多的時候就會產生密鑰數據的急劇膨脹。

混合加密的技術就是將不對稱加密算法及對稱加密方法的優勢相結合。混合加密技術中,每個客戶和對端共用一個秘密的主密鑰,經過運用加密該主密鑰完成話密鑰的分配,主密鑰的分配運用公密鑰方式,再將這個主密鑰用作加密用戶信息的密鑰,也就是運用對稱加密算法對大數據量進行加密,比如交易過程中的客戶或商品的詳盡資料,再運用不對稱加密算法對小的數據量進行加密,比如對稱加密算法的密鑰。

3安全及性能的分析

由于運用XML加密技術的數據安全方案之后生成的文件為XML格式,所以擁有XML技術的全部優勢,主要體現在以下六點:第一,能夠運用在不相同的操作系統上面,即跨平臺性;第二,立足于文本文件的加密文件,能夠在文本編輯器上進行查看、編輯和修改;第三,加密文件的結構可以經過DTD和Schema文件先定下來,這樣的結構定義可以使得不同系統公司的數據交換順利的進行;第四,擁有極強的擴展性;第五,每一項數據的理解及識別都非常容易,應用程序來訪問數據時不是依據數據的位置而是依據描述性記憶,使得應用程序適應改變的特性得到了很大提升;第六,根據文件的性質可以幫助它經過防火墻及其余安全機制,使交換數據變得更加方便。

4結語

現在的人們越來越多的重視XML技術的發展,XML技術輸送結構化的數據這種方法被越來越多的公司運用到移動電子商務活動中,這種技術的安全性也顯得尤為重要。要想保證數據安全,在移動環境中使用便利,就必須得將結構化的數據加密,這篇論文對XML加密技術的研究正是為了達到這個目的。

這篇論文根據移動電子商務的特征,依賴于XML語言處理數據的優勢,研發出將加密數據立足于XML的移動電子商務數據的技術,之后詳細闡述了XML加密技術的詳盡使用方法及相應的算法,通過不對稱加密及對稱加密這兩個角度做切入點,對移動平臺的數據加密采用混合加密的方法,然后再對XML加密技術的安全和性能進行了分析。

參考文獻

篇(7)

二十世紀六十年代,人們發現了混沌理論。混沌理論即一個給出混亂、隨機的分周期性結果的模型,卻是由確定的非線性微分方程構成。混沌是一種形式非常復雜的運動,看似雜亂無章的隨機運動軌跡,卻是由一個確定方程模型得出。混沌對初始條件的敏感度非常高。密碼技術是一種研究使用密碼進行加密的技術,而隨著信息技術的發展,竊取加密密碼的方法越來越多,并且隨著傳統密碼技術的不斷使用和技術公開,傳統密碼技術的保密性已經降低,所以一些新的密碼技術開始出現,其中包括混沌加密、量子密碼以及零知識證明等。本文首先介紹混沌加密密碼技術,然后介紹光學通信,最后重點探討混沌加密在光學通信中的應用。

1.混沌加密

我們首先對混沌加密的相關內容做一下簡單介紹,主要包括:混沌的特征、混沌加密的定義以及混沌加密的常用方法。混沌的特征主要有:混沌運動軌跡符合分數維理論,混沌軌跡是有序與無序的結合、并且是有界的偽隨機軌跡,混沌運動具有遍歷性,所有的混沌系統都具有幾個相同的常數、并且符合利亞普諾夫指數特性,混沌運動的功率譜為連續譜線以及混沌系統具有正K熵等。混沌加密是一種新的密碼技術,是將混沌技術與加密方法相結合的一種密碼加密技術。混沌加密的方法有很多種,根據不同的通信模式,可以選擇不同的加密方式與混沌技術結合,以實現信息的加密傳輸。混沌加密的常用方法主要包括:數字流混沌加密、數字信號混沌加密以及連續流混沌加密等。

2.光學通信

之所以將混沌加密應用在光學通信中,是因為光學中存在混沌現象,這種混沌現象既包括時間混沌現象也包括空間混沌現象。光學通信是一種利用光波載波進行通信的方式,其優點是信息容量大、適應性好、施工方便靈活、、保密性好、中繼距離長以及原材料來源廣等,光纖通信是光學通信中最重要的一種通信方式,已成為現代通信的重要支柱和發展趨勢。光纖通信系統的組成主要包括:數據信號源、光數據傳輸端、光學通道以及光數據接收端等。數據信號源包括所有的數據信號,具體體現為圖像、文字、語音以及其他數據等經過編碼后所形成的的信號。光數據傳輸端主要包括調制解調器以及計算機等數據發送設備。光學通道主要包括光纖和中繼放大器等。光數據接收端主要包括計算機等數據接收設備以及信號轉換器等。

3.探討混沌加密在光學通信中的應用

在光學通信中,應用混沌加密技術對明文進行加密處理,以保證明文傳遞過程中的安全性和保密性。本文重點對混沌加密在光學通信中的應用進行了探討。其內容主要包括:混沌加密常用方法、光學通信中混沌加密通信常用方案以及光學通信中兩級加密的混沌加密通信方案。其中混沌加密常用方法主要包括:數字流混沌加密、數字信號混沌加密以及連續流混沌加密等。光學通信中混沌加密通信常用方案主要包括:混沌掩蓋加密方案、混沌鍵控加密方案、混沌參數加密方案以及混沌擴頻加密方案等。

3.1混沌加密常用方法

連續流混沌加密方法:連續流混沌加密利用的加密處理方式是利用混沌信號來掩蓋明文,即使用混沌信號對明文進行加密處理。連續流混沌加密方法常應用在混沌掩蓋加密方案以及混沌參數加密方案中。其加密后的通信模式是模到模的形式。

數字流混沌加密方法:其加密后的通信模式是模到數再到模的形式。

數字信號混沌加密方法:其加密后的通信方式是數到數的形式。主要包括混沌時間序列調頻加密技術以及混沌時間編碼加密技術。主要是利用混沌數據信號對明文進行加密。

3.2光學通信中混沌加密通信常用方案

在光學通信中,利用混沌加密技術進行通信方案的步驟主要包括:先利用混沌加密方法對明文進行加密(可以使用加密系統進行這一過程),然后通過光釬進行傳輸,接收端接收后,按照一定解密步驟進行解密,恢復明文內容。

混沌掩蓋加密方案:其掩蓋的方式主要有三種:一種是明文乘以密鑰,一種是明文加密鑰,一種是明文與密鑰進行加法與乘法的結合。

混沌鍵控加密方案:其利用的加密方法主要為FM-DCSK數字信號加密方法。該方案具有良好的抗噪音能力,并且能夠不受系統參數不匹配的影響。

混沌參數加密方案:就是將明文與混沌系統參數進行混合傳送的一種方案。這種方案增加了通信對參數的敏感程度。

混沌擴頻加密方案:該方案中,擴頻序列號一般是使用混沌時間序列,其加密方法是利用數字信號,該方案的抗噪音能力特別好。

3.3光學通信中兩級加密的混沌加密通信方案

為了進一步保證傳輸信息的安全保密性,需要對明文進行二次加密。其步驟是:首先先對明文進行第一次加密(主要利用雙反饋混沌驅動系統產生密鑰1,然后將明文與密鑰1組合起來形成密文1),第二步是通過加密超混沌系統產生的密鑰2對密文1進行二次加密,形成密文2,第三步將密文2通過光纖進行傳遞,同時將加密超混沌系統一起傳遞到接收端。第四步,接收端接收到密文2以及加密超混沌系統后,對密文2進行解密,形成密文1,然后將密文1傳送到雙反饋混沌驅動系統產生密鑰1,然后將密文1進行解密,通過濾波器破譯出明文。此外,還可以對二級加密通信進行優化,即使用EDFA(雙環摻餌光纖激光器)產生密鑰進行加密。

4.結論

本文首先對混沌加密的相關內容做一下簡單介紹,主要包括:混沌的特征、混沌加密的定義以及混沌加密的常用方法。然后我們簡單介紹了一下光學通信以及光纖通信,并且介紹了光纖通信的組成結構。并且由于光學中存在混沌現象,所以我們在光學通信中應用混沌加密技術進行保密工作。最后本文重點探討了混沌加密在光學通信中的應用,其內容主要包括:混沌加密常用方法、光學通信中混沌加密通信常用方案以及光學通信中兩級加密的混沌加密通信方案。其中混沌加密常用方法主要包括:數字流混沌加密、數字信號混沌加密以及連續流混沌加密等。光學通信中混沌加密通信常用方案主要包括:混沌掩蓋加密方案、混沌鍵控加密方案、混沌參數加密方案以及混沌擴頻加密方案等。

【參考文獻】

[1]馬瑞敏,陳繼紅,朱燕瓊.一種基于混沌加密的關系數據庫水印算法[J].南通大學學報(自然科學版),2012,11(1):13-27.

篇(8)

1、數據加密的歷史起源

香農在創立單鑰密碼模型的同時,還從理論上論證了幾乎所有由傳統的加密方法加密后所得到的密文,都是可以破譯的,這一度使得密碼學的研究陷人了嚴重的困境。

到了20世紀60年代,由于計算機技術的發展和應用,以及結構代數、可計算性理論學科研究成果的出現,使得密碼學的研究走出了困境,進人了一個新的發展階段。特別是當美國的數據加密標準DES和非對稱密鑰加密體制的出現,為密碼學的應用打下了堅實的基礎,在此之后,用于信息保護的加密的各種算法和軟件、標準和協議、設備和系統、法律和條例、論文和專著等層出不窮,標志著現代密碼學的誕生。電腦因破譯密碼而誕生,而電腦的發展速度遠遠超過人類的想象。

2、數據加密的基本概念

所謂計算機數據加密技術(Data Encryption Technology),也就是說,通過密碼學中的加密知識對于一段明文信息通過加密密鑰以及加密函數的方式來實現替換或者是移位,從而加密成為不容易被其他人訪問和識別的、不具備可讀性的密文,而對于信息的接收方,就能夠通過解密密鑰和解密函數來將密文進行解密從而得到原始的明文,達到信息的隱蔽傳輸的目的,這是一種保障計算機網絡數據安全的非常重要的技術。

二、數據存儲加密的主要技術方法

1、文件級加密

文件級加密可以在主機上實現,也可以在網絡附加存儲(NAS)這一層以嵌入式實現。對于某些應用來講,這種加密方法也會引起性能問題;在執行數據備份操作時,會帶來某些局限性,對數據庫進行備份時更是如此。特別是,文件級加密會導致密鑰管理相當困難,從而添加了另外一層管理:需要根據文件級目錄位置來識別相關密鑰,并進行關聯。

在文件層進行加密也有其不足的一面,因為企業所加密的數據仍然比企業可能需要使用的數據要多得多。如果企業關心的是無結構數據,如法律文檔、工程文檔、報告文件或其他不屬于組織嚴密的應用數據庫中的文件,那么文件層加密是一種理想的方法。如果數據在文件層被加密,當其寫回存儲介質時,寫入的數據都是經過加密的。任何獲得存儲介質訪問權的人都不可能找到有用的信息。對這些數據進行解密的唯一方法就是使用文件層的加密/解密機制。

2、數據庫級加密

當數據存儲在數據庫里面時,數據庫級加密就能實現對數據字段進行加密。這種部署機制又叫列級加密,因為它是在數據庫表中的列這一級來進行加密的。對于敏感數據全部放在數據庫中一列或者可能兩列的公司而言,數據庫級加密比較經濟。不過,因為加密和解密一般由軟件而不是硬件來執行,所以這個過程會導致整個系統的性能出現讓人無法承受的下降。

3、介質級加密

介質級加密是一種新出現的方法,它涉及對存儲設備(包括硬盤和磁帶)上的靜態數據進行加密。雖然介質級加密為用戶和應用提供了很高的透明度,但提供的保護作用非常有限:數據在傳輸過程中沒有經過加密。只有到達了存儲設備,數據才進行加密,所以介質級加密只能防范有人竊取物理存儲介質。另外,要是在異構環境使用這項技術,可能需要使用多個密鑰管理應用軟件,這就增加了密鑰管理過程的復雜性,從而加大了數據恢復面臨的風險。

4、嵌入式加密設備

嵌入式加密設備放在存儲區域網(SAN)中,介于存儲設備和請求加密數據的服務器之間。這種專用設備可以對通過上述這些設備、一路傳送到存儲設備的數據進行加密,可以保護靜態數據,然后對返回到應用的數據進行解密。

嵌入式加密設備很容易安裝成點對點解決方案,但擴展起來難度大,或者成本高。如果部署在端口數量多的企業環境,或者多個站點需要加以保護,就會出現問題。這種情況下,跨分布式存儲環境安裝成批硬件設備所需的成本會高得驚人。此外,每個設備必須單獨或者分成小批進行配置及管理,這給管理添加了沉重負擔。

5、應用加密

應用加密可能也是最安全的方法。將加密技術集成在商業應用中是加密級別的最高境界,也是最接近“端對端”加密解決方案的方法。在這一層,企業能夠明確地知道誰是用戶,以及這些用戶的典型訪問范圍。企業可以將密鑰的訪問控制與應用本身緊密地集成在一起。這樣就可以確保只有特定的用戶能夠通過特定的應用訪問數據,從而獲得關鍵數據的訪問權。任何試圖在該點下游訪問數據的人都無法達到自己的目的。

三、數據加密技術展望

數據加密技術今后的研究重點將集中在三個方向:第一,繼續完善非對稱密鑰加密算法;第二,綜合使用對稱密鑰加密算法和非對稱密鑰加密算法。利用他們自身的優點來彌補對方的缺點。第三,隨著筆記本電腦、移動硬盤、數碼相機等數碼產品的流行,如何利用機密技術保護數碼產品中信息的安全性和私密性、降低因丟失這些數碼產品帶來的經濟損失也將成為數據加密技術的研究熱點。

四、結論

信息安全問題涉及到國家安全、社會公共安全,世界各國已經認識到信息安全涉及重大國家利益,是互聯網經濟的制高點,也是推動互聯網發展、電子政務和電子商務的關鍵,發展信息安全技術是目前面臨的迫切要求,除了上述內容以外,網絡與信息安全還涉及到其他很多方面的技術與知識,例如:客技術、防火墻技術、入侵檢測技術、病毒防護技術、信息隱藏技術等。一個完善的信息安全保障系統,應該根據具體需求對上述安全技術進行取舍。

參考文獻

[1] Christof Paar,Jan Pelzl,馬小婷,常用加密技術原理與應用,清華大學出版社,2012.09.

[2] Dafydd Stuttard,石華耀,傅志紅,黑客攻防技術寶典:Web實戰篇,人民郵電出版社,2013.05.

[3] 徐立冰,云計算和大數據時代網絡技術揭秘,人民郵電出版社,2013.04.

[4] 九州書源,電腦黑客攻防,清華大學出版社,2011.08.

[5] 科爾伯格(Collberg C.),納美雷(Nagra J.),崔孝晨,軟件加密與解密,人民郵電出版社,2012.05.

[6] 段鋼,加密與解密,電子工業出版社,2009.07.

篇(9)

2 網絡通訊中信息安全存在的風險

計算機和互聯網是網絡通訊的載體,然而隨著信息產業的快速發展,網絡通訊中信息的安全性問題也越來越突出;這些安全問題主要表現在網絡的操作系統、網絡的開放性與虛擬性和應用平臺等方面,我們將對這些方面存在的信息安全問題進行分析。

2.1操作系統的安全

每一臺計算機都有操作系統,都知道如果一臺計算機沒有操作系統是無法使用的。網絡通信中主要的信息安全問題就在于網絡的操作系統,操作系統的穩定性決定著網絡通信的安全性,一旦系統出現漏洞,就容易被入侵,信息泄露的可能性非常大,甚至會出現計算機無法使用的情況。然而對系統操作存在的安全問題,主要有對操作系統的不了解、操作技術的不熟練、違反網絡通信安全保密的相關規定、網絡通信的安全意識不強以及對密鑰設置的不規范、長期使用同一個密鑰等原因,這些原因都有可能造成網絡通訊中信息的泄露;所以,我們要對網絡通訊加強管理,保證信息的安全,防止信息的泄露。

2.2網絡的開放性與虛擬性帶來的安全問題

網絡時時刻刻都在影響著我們的生活,對我們的生活帶來便利,但也會帶來負面的影響;網絡是一個開放性和虛擬性的平臺,然而由于網絡的開放性和虛擬性,會有一些人利用網絡的這一特點進行違規甚至是違法的操作,比如使用一些手段對重要的通訊信息進行攔截或竊聽,甚至是對信息的改變和破壞。網絡的通信線路,一般都沒有進行相應的電磁屏蔽保護措施,這就使得通信過程中信息容易被攔截和竊聽;這對網絡通訊中信息的安全帶來了嚴重的危害。

2.3通訊軟件的應用

人們在網絡上進行信息交流,一般都需要通訊軟件;然而這些通訊軟件或多或少的都存在一些漏洞,這就容易造成信息的泄露,更容易遭到病毒或黑客的入侵,對通訊過程中信息安全造成危害,所以應該對信息進行相應的安全防護措施,防止信息被竊取,保證通訊過程中信息交流的安全。

3 加密技術

一個完整的密碼體制由五個部分組成,分別是明文、密文、密鑰、加密變換、解密變換;對信息的加密過程是將明文通過加密算法進行加密,再經過網絡鏈路傳輸給接收者,然后接收者利用自己的密鑰通過解密算法對密文進行解密,還原成明文。

3.1對稱加密技術

對稱加密技術,就是對信息加密與解密采用相同的密鑰,加密密鑰同時也可以當做解密密鑰用。這種加密技術使用起來比較簡單,密鑰比較短,在網絡信息傳輸上得到了廣泛的應用,然而但這種加密技術的安全性不是很高。

在對稱加密技術中運用的加密算法有數據加密標準算法和高級加密標準算法,而數據加密標準算法最常用。對稱加密技術有一定的優勢也有一定的弊端,優勢是使用起來比較方便,密鑰比較短;缺點:一、通訊雙方在通訊時使用同一個密鑰,這就給信息通訊帶來了不安全因素,在信息傳輸過程中,常常一個傳送者給多個不同的接收者傳送信息,這就需要多個密鑰,這對信息的傳送者帶來煩瑣;二、對稱加密算法一般無法鑒別信息的完整性,也無法對信息發送者和信息接收者的身份進行確認,這對信息在傳輸過程中帶來了不安全因素。三、在對稱加密技術中對密鑰的管理是關鍵,因為在對稱加密技術中信息的傳送者和信息的接收者是采用相同的密鑰,這就需要雙方共同對密鑰進行保密。

3.2非對稱加密技術

非對稱加密技術,就是對信息的加密與解密采用不同的密鑰,然而這種加密技術是針對對稱加密技術中存在的不足所提出的一種加密技術;非對稱加密技術又可以稱為公鑰加密技術,意思是加密密鑰是公開的,大家都可以知道的;而解密密鑰只有信息的接收者才知道。在非對稱加密技術里,最常用的密碼算法是RSA算法,運用這種算法對信息進行加密,信息盜取者就不可能由加密密鑰推算出解密密鑰,因為這種算法將加密密鑰與加密算法分開,使得網絡用戶密鑰的管理更加方便安全。

4 加密技術的應用

4.1信息傳輸過程中的節點加密

對信息的加密方式有很多,有在傳輸前對信息進行加密,有在傳輸通道對信息進行加密等等。簡單介紹一下傳輸過程中的節點加密,節點加密是指信息傳輸路徑中對在節點機上傳輸的信息進行加密,然而節點加密不允許信息以明文的方式在節點機上進行傳輸;節點加密是先把接收到的信息進行解密,再對已解密的明文用另一個密鑰進行加密,這就是所謂的節點加密,由于節點加密對信息加密的特殊性,使得這種加密方式相對于其他加密方式的安全性比較弱,所以一些重要的信息不采用此方法來進行加密。

4.2信息傳輸過程中的鏈路加密

鏈路加密是指在鏈路上對信息進行加密,而不是在信息的發送端和接收端進行加密;鏈路加密是一種在傳輸路徑中的加密方式。鏈路加密原理是信息在傳輸路徑中每個節點機都作為信息接收端,對信息進行不斷的加密和解密,使信息最終到達真正的接收端。這種加密方式相對于節點加密較安全,運用相對比較廣泛。然而這種鏈路加密也存在弊端,由于運用這種方式進行加密,使得信息在傳輸過程中進行不斷地加解密,信息以明文的形式多次出現,這會導致信息容易泄露,給通訊過程中信息的安全帶來危害。

4.3信息傳輸過程中的端對端加密

端對端加密是指信息在傳輸過程中一直以密文的形式進行傳輸,在傳送過程中并不能進行解密,使得信息在整個傳送過程中得到保護;即使信息在傳輸過程中被攔截,信息也不會被泄露,而且每條信息在傳輸過程中都進行獨立加密,這樣即使一條信息被攔截或遭到破壞,也不會影響其他信息的安全傳輸;這種加密方式相對于前兩種加密方式可靠性更高、安全性更好,而且更容易設計和維護,價格也相對比較便宜。不過[ dylW.net專業提供教育論文寫作的服務,歡迎光臨dylW.NeT]此種加密方式存在一點不足,就是不能夠對傳輸的信息在發送端和接收端進行隱藏。由于端對端的加密方式可靠性高、安全性好、價格便宜,在信息傳輸中得到了廣泛的應用,更能確保信息在網絡通訊中的安全傳輸。

5 結束語

隨著互聯網的快速發展,網絡通訊在日常生活中的得到了廣泛的應用;竊取網絡通訊信息的人越來越多,對通訊信息攻擊的手段也層出不窮,攻擊技術也日益增強,使得各種網絡信息安全問題日益惡化,問題更得不到根本性的解決;可見網絡通訊中的信息安全技術有待提高。然而,由于我國網絡信息技術起步晚,改革初期發展慢,給網絡通訊安全埋下了隱患;雖然近幾年得到了快速發展,但也暴露出嚴重的網絡通訊信息安全問題;所以我們要不斷提高網絡信息交流的防御能力,防止信息在網絡通訊中被泄露;為大家營造出一個安全、快捷、舒適的網絡通訊環境,即能促進網絡通訊的發展,也能提高人們的生活質量。

參考文獻:

篇(10)

一、面臨的主要威脅

1、內部竊密和破壞。內部人員可能對網絡系統形成下列威脅:內部人員有意或無意泄密、更改記錄信息;內部非授權人員有意無意偷竊機密信息、更改網絡配置和記錄信息;內部人員破壞網絡系統。

2、截收。攻擊者可能通過搭線或在電磁波輻射的范圍內安裝截收裝置等方式,截獲機密信息,或通過對信息流和流向、通信頻度和長度等參數的分析,推出有用信息。它不破壞傳輸信息的內容,不易被查覺。

3、非法訪問。非法訪問指的是未經授權使用網絡資源或以未授權的方式使用網絡資源,它包括非法用戶如黑客進入網絡或系統進行違法操作,合法用戶以未授權的方式進行操作。

4、破壞信息的完整性。攻擊可能從三個方面破壞信息的完整性:改變信息流的次序、時序,更改信息的內容、形式;刪除某個消息或消息的某些部分;在消息中插入一些信息,讓收方讀不懂或接收錯誤的信息。

5、冒充。攻擊者可能進行下列冒充:冒充領導命令、調閱文件;冒充主機欺騙合法主機及合法用戶;冒充網絡控制程序套取或修改使用權限、口令、密鑰等信息,越權使用網絡設備和資源;接管合法用戶、欺騙系統、占用合法用戶的資源。

6、破壞系統的可用性。攻擊者可能從下列幾個方面破壞網絡系統的可用性:使合法用戶不能正常訪問網絡資源;使有嚴格時間要求的服務不能及時得到響應;摧毀系統。

7、重演。重演指的是攻擊者截獲并錄制信息,然后在必要的時候重發或反復發送這些信息。

8、抵賴。可能出現下列抵賴行為:發信者事后否認曾經發送過某條消息;發信者事后否認曾經發送過某條消息的內容;發信者事后否認曾經接收過某條消息;發信者事后否認曾經接收過某條消息的內容。

9、其它威脅。對網絡系統的威脅還包括計算機病毒、電磁泄漏、各種災害、操作失誤等。

二、防火墻技術

防火墻技術是建立在現代通信網絡技術和信息安全技術基礎上的應用性安全技術,越來越多地應用于專用網絡與公用網絡的互聯環境之中,尤其以接入Internet網絡為甚。防火墻是指設置在不同網絡(如可信任的企業內部網和不可信的公共網)或網絡安全域之間的一系列部件的組合。它是不同網絡或網絡安全域之間信息的唯一出入口,能根據企業的安全政策控制(允許、拒絕、監測)出入網絡的信息流,且本身具有較強的抗攻擊能力。它是提供信息安全服務,實現網絡和信息安全的基礎設施。在邏輯上,防火墻是一個分離器,一個限制器,也是一個分析器,有效地監控了內部網和Internet之間的任何活動,保證了內部網絡的安全。防火墻是網絡安全的屏障:一個防火墻(作為阻塞點、控制點)能極大地提高一個內部網絡的安全性,并通過過濾不安全的服務而降低風險。由于只有經過精心選擇的應用協議才能通過防火墻,所以網絡環境變得更安全。防火墻可以強化網絡安全策略:通過以防火墻為中心的安全方案配置,能將所有安全軟件(如口令、加密、身份認證、審計等)配置在防火墻上。對網絡存取和訪問進行監控審計:如果所有的訪問都經過防火墻,那么,防火墻就能記錄下這些訪問并做出日志記錄,同時也能提供網絡使用情況的統計數據。

三、入侵檢測技術

IETF將一個入侵檢測系統分為四個組件:事件產生器(Event Generators);事件分析器(Event An-alyzers);響應單元(Response Units)和事件數據庫(Event Data Bases)。事件產生器的目的是從整個計算環境中獲得事件,并向系統的其他部分提供此事件。事件分析器分析得到的數據,并產生分析結果。響應單元則是對分析結果做出反應的功能單元,它可以做出切斷連接、改變文件屬性等強烈反應,也可以只是簡單的報警。事件數據庫是存放各種中間和最終數據的地方的統稱,它可以是復雜的數據庫,也可以是簡單的文本文件。

四、數據加密技術

數據加密技術是網絡中最基本的安全技術,主要是通過對網絡中傳輸的信息進行數據加密來保障其安全性。加密是一種限制對網絡上傳輸數據的訪問權的技術。原始數據(也稱為明文,plaintext)被加密設備(硬件或軟件)和密鑰加密而產生的經過編碼的數據稱為密文(ciphertext)。將密文還原為原始明文的過程稱為解密,它是加密的反向處理,但解密者必須利用相同類型的加密設備和密鑰,才能對密文進行解密。數據加密類型可以簡單地分為三種:一是根本不考慮解密問題;二是私用密鑰加密技術;三是公開密鑰加密技術。

五、安全協議

安全協議的建立和完善,是計算機網絡信息安全保密走上規范化、標準化道路的基本因素.目前已開發應用的安全協議有以下5種:(1)加密協議.一能用于把保密數據轉換成公開數據,在公用網中自由發送:二能用于授權控制,無關人員無法解讀。(2)密鑰管理協議。包括密鑰的生成、分類、存儲、保護、公證等協議.(3)數據驗證協議。包括數據解壓、數據驗證、數字簽名。(4)安全審計協議。包括與安全有關的事件,如數據事件的探測、收集、控制。(5)防護協議。除防病毒卡、千擾儀、防泄露等物理性防護措施外,還用于對信息系統自身保護的數據(審計表等)和各種秘密參數(用戶口令、密鑰等)進行保護,以增強反網絡入侵功能。

參考文獻:

上一篇: 消防雙擁工作計劃 下一篇: 每日激勵語
相關精選
相關期刊
久久久噜噜噜久久中文,精品五月精品婷婷,久久精品国产自清天天线,久久国产一区视频
欧洲日韩一区二区三区 | 天堂视频中文字幕一区 | 最新国自产在线播放 | 日本韩国欧美一区二区三区 | 中文字幕在线免费视频 | 五月丁香激情综合在线观看 |